IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v25y2016i4d10.1007_s11749-016-0498-y.html
   My bibliography  Save this article

Uniform integrability of the OLS estimators, and the convergence of their moments

Author

Listed:
  • Georgios Afendras

    (University at Buffalo)

  • Marianthi Markatou

    (University at Buffalo)

Abstract

The problem of convergence of moments of a sequence of random variables to the moments of its asymptotic distribution is important in many applications. These include the determination of the optimal training sample size in the cross-validation estimation of the generalization error of computer algorithms, and in the construction of graphical methods for studying dependence patterns between two biomarkers. In this paper, we prove the uniform integrability of the ordinary least squares estimators of a linear regression model, under suitable assumptions on the design matrix and the moments of the errors. Further, we prove the convergence of the moments of the estimators to the corresponding moments of their asymptotic distribution, and study the rate of the moment convergence. The canonical central limit theorem corresponds to the simplest linear regression model. We investigate the rate of the moment convergence in canonical central limit theorem proving a sharp improvement of von Bahr’s (Ann Math Stat 36:808–818, 1965) theorem.

Suggested Citation

  • Georgios Afendras & Marianthi Markatou, 2016. "Uniform integrability of the OLS estimators, and the convergence of their moments," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(4), pages 775-784, December.
  • Handle: RePEc:spr:testjl:v:25:y:2016:i:4:d:10.1007_s11749-016-0498-y
    DOI: 10.1007/s11749-016-0498-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-016-0498-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-016-0498-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Georgios Afendras & Nickos Papadatos & Violetta E. Piperigou, 2020. "On the limiting distribution of sample central moments," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(2), pages 399-425, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:25:y:2016:i:4:d:10.1007_s11749-016-0498-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.