IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v20y2011i1d10.1007_s11749-010-0193-3.html
   My bibliography  Save this article

A general near-exact distribution theory for the most common likelihood ratio test statistics used in Multivariate Analysis

Author

Listed:
  • Filipe J. Marques

    (Universidade Nova de Lisboa)

  • Carlos A. Coelho

    (Universidade Nova de Lisboa)

  • Barry C. Arnold

    (University of California)

Abstract

In this paper we first show how the exact distributions of the most common likelihood ratio test (l.r.t.) statistics, that is, the ones used to test the independence of several sets of variables, the equality of several variance-covariance matrices, sphericity, and the equality of several mean vectors, may be expressed as the distribution of the product of independent Beta random variables or the product of a given number of independent random variables whose logarithm has a Gamma distribution times a given number of independent Beta random variables. Then, we show how near-exact distributions for the logarithms of these statistics may be expressed as Generalized Near-Integer Gamma distributions or mixtures of these distributions, whose rate parameters associated with the integer shape parameters, for samples of size n, all have the form (n−j)/n for j=2,…,p, where for three of the statistics, p is the number of variables involved, while for the other one, it is the sum of the number of variables involved and the number of mean vectors being tested. What is interesting is that the similarities exhibited by these statistics are even more striking in terms of near-exact distributions than in terms of exact distributions. Moreover all the l.r.t. statistics that may be built as products of these basic statistics also inherit a similar structure for their near-exact distributions. To illustrate this fact, an application is made to the l.r.t. statistic to test the equality of several multivariate Normal distributions.

Suggested Citation

  • Filipe J. Marques & Carlos A. Coelho & Barry C. Arnold, 2011. "A general near-exact distribution theory for the most common likelihood ratio test statistics used in Multivariate Analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 180-203, May.
  • Handle: RePEc:spr:testjl:v:20:y:2011:i:1:d:10.1007_s11749-010-0193-3
    DOI: 10.1007/s11749-010-0193-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-010-0193-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-010-0193-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Coelho, Carlos A. & Marques, Filipe J., 2010. "Near-exact distributions for the independence and sphericity likelihood ratio test statistics," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 583-593, March.
    2. Coelho, Carlos A., 1998. "The Generalized Integer Gamma Distribution--A Basis for Distributions in Multivariate Statistics," Journal of Multivariate Analysis, Elsevier, vol. 64(1), pages 86-102, January.
    3. Aslam, Shagufta & Rocke, David M., 2005. "A robust testing procedure for the equality of covariance matrices," Computational Statistics & Data Analysis, Elsevier, vol. 49(3), pages 863-874, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Filipe Marques & Carlos Coelho & Barry Arnold, 2011. "A general near-exact distribution theory for the most common likelihood ratio test statistics used in Multivariate Analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 180-203, May.
    2. Filipe J. Marques & Carlos A. Coelho & Paulo C. Rodrigues, 2017. "Testing the equality of several linear regression models," Computational Statistics, Springer, vol. 32(4), pages 1453-1480, December.
    3. Filipe Marques & Carlos Coelho, 2013. "Obtaining the exact and near-exact distributions of the likelihood ratio statistic to test circular symmetry through the use of characteristic functions," Computational Statistics, Springer, vol. 28(5), pages 2091-2115, October.
    4. Coelho, Carlos A. & Marques, Filipe J., 2010. "Near-exact distributions for the independence and sphericity likelihood ratio test statistics," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 583-593, March.
    5. Arnold, Barry C. & Coelho, Carlos A. & Marques, Filipe J., 2013. "The distribution of the product of powers of independent uniform random variables — A simple but useful tool to address and better understand the structure of some distributions," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 19-36.
    6. Carlos A. Coelho & Anuradha Roy, 2020. "Testing the hypothesis of a doubly exchangeable covariance matrix," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(1), pages 45-68, January.
    7. Carlos A. Coelho & Anuradha Roy, 2017. "Testing the hypothesis of a block compound symmetric covariance matrix for elliptically contoured distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 308-330, June.
    8. Katayama, Shota & Kano, Yutaka & Srivastava, Muni S., 2013. "Asymptotic distributions of some test criteria for the mean vector with fewer observations than the dimension," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 410-421.
    9. Das, Sourish & Dey, Dipak K., 2010. "On Bayesian inference for generalized multivariate gamma distribution," Statistics & Probability Letters, Elsevier, vol. 80(19-20), pages 1492-1499, October.
    10. Serim Hong & Carlos A. Coelho & Junyong Park, 2022. "An Exact and Near-Exact Distribution Approach to the Behrens–Fisher Problem," Mathematics, MDPI, vol. 10(16), pages 1-17, August.
    11. Marques, Filipe J. & Loingeville, Florence, 2016. "Improved near-exact distributions for the product of independent Generalized Gamma random variables," Computational Statistics & Data Analysis, Elsevier, vol. 102(C), pages 55-66.
    12. Edmond Levy, 2022. "On the density for sums of independent exponential, Erlang and gamma variates," Statistical Papers, Springer, vol. 63(3), pages 693-721, June.
    13. Blacher, René, 2003. "Multivariate quadratic forms of random vectors," Journal of Multivariate Analysis, Elsevier, vol. 87(1), pages 2-23, October.
    14. Carlos Coelho & Barry Arnold & Filipe Marques, 2015. "The exact and near-exact distributions of the main likelihood ratio test statistics used in the complex multivariate normal setting," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 386-416, June.
    15. Carlos Coelho & Filipe Marques, 2012. "Near-exact distributions for the likelihood ratio test statistic to test equality of several variance-covariance matrices in elliptically contoured distributions," Computational Statistics, Springer, vol. 27(4), pages 627-659, December.
    16. Jamshidian, Mortaza & Schott, James R., 2007. "Testing equality of covariance matrices when data are incomplete," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4227-4239, May.
    17. Corina D. Constantinescu & Jorge M. Ramirez & Wei R. Zhu, 2019. "An application of fractional differential equations to risk theory," Finance and Stochastics, Springer, vol. 23(4), pages 1001-1024, October.
    18. Coelho, Carlos A., 2004. "The generalized near-integer Gamma distribution: a basis for 'near-exact' approximations to the distribution of statistics which are the product of an odd number of independent Beta random variables," Journal of Multivariate Analysis, Elsevier, vol. 89(2), pages 191-218, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:20:y:2011:i:1:d:10.1007_s11749-010-0193-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.