Author
Abstract
Like any other biometric systems, Automatic Speaker Verification (ASV) systems are also vulnerable to the spoofing attacks. Hence, it is important to develop the countermeasures in order to handle these attacks. In spoofing mainly two types of attacks are considered, logical access attacks and presentation attacks. In the last few decades, several systems have been proposed by various researchers for handling these kinds of attacks. However, noise handling capability of ASV systems is of major concern, as the presence of noise may make an ASV system to falsely evaluate the original human voice as the spoofed audio. Hence, the main objective of this paper is to review and analyze the various noise robust ASV systems proposed by different researchers in recent years. The paper discusses the various front end and back-end approaches that have been used to develop these systems with putting emphasis on the noise handling techniques. Various kinds of noises such as babble, white, background noises, pop noise, channel noises etc. affect the development of an ASV system. This survey starts with discussion about the various components of ASV system. Then, the paper classifies and discusses various enhanced front end feature extraction techniques like phase based, deep learning based, magnitude-based feature extraction techniques etc., which have been proven to be robust in handling noise. Secondly, the survey highlights the various deep learning and other baseline models that are used in backend, for classification of the audio correctly. Finally, it highlights the challenges and issues that still exist in noise handling and detection, while developing noise robust ASV systems. Therefore, on the basis of the proposed survey it can be interpreted that the noise robustness of ASV system is the challenging issue. Hence the researchers should consider the robustness of ASV against noise along with spoofing attacks.
Suggested Citation
Sanil Joshi & Mohit Dua, 2024.
"Noise robust automatic speaker verification systems: review and analysis,"
Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 87(3), pages 845-886, November.
Handle:
RePEc:spr:telsys:v:87:y:2024:i:3:d:10.1007_s11235-024-01212-8
DOI: 10.1007/s11235-024-01212-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:telsys:v:87:y:2024:i:3:d:10.1007_s11235-024-01212-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.