IDEAS home Printed from https://ideas.repec.org/a/spr/telsys/v87y2024i2d10.1007_s11235-024-01195-6.html
   My bibliography  Save this article

Distributed neuro-fuzzy routing for energy-efficient IoT smart city applications in WSN

Author

Listed:
  • S. Jeevanantham

    (National Institute of Technology)

  • C. Venkatesan

    (National Institute of Technology)

  • B. Rebekka

    (National Institute of Technology)

Abstract

Wireless sensor networks (WSNs) enable seamless data gathering and communication, facilitating efficient and real-time decision-making in IoT monitoring applications. However, the energy required to maintain communication in WSN-based IoT networks poses significant challenges, such as packet loss, packet drop, and rapid energy depletion. These issues reduce network life and performance, increasing the risk of delayed packet delivery. To address these challenges, this work presents a novel energy-efficient distributed neuro-fuzzy routing model executed in two stages to enhance communication efficiency and energy management in WSN-based IoT applications. In the first stage, nodes with high energy levels are predicted using a fusion of distributed learning with neural networks and fuzzy logic. In the second stage, clustering and routing are performed based on the predicted eligible nodes, incorporating thresholds for energy and distance with two combined metrics. The cluster head (CH) combined metric optimizes cluster head selection, while the next-hop combined metric facilitates efficient multi-hop communication. Extensive simulation results demonstrate that the proposed model significantly enhances network lifetime compared to EANFR, RBFNN T2F, and TTDFP by 9.48%, 25%, and 31.5%, respectively.

Suggested Citation

  • S. Jeevanantham & C. Venkatesan & B. Rebekka, 2024. "Distributed neuro-fuzzy routing for energy-efficient IoT smart city applications in WSN," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 87(2), pages 497-516, October.
  • Handle: RePEc:spr:telsys:v:87:y:2024:i:2:d:10.1007_s11235-024-01195-6
    DOI: 10.1007/s11235-024-01195-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11235-024-01195-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11235-024-01195-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Jeevanantham & B. Rebekka, 2022. "Energy-aware neuro-fuzzy routing model for WSN based-IoT," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 81(3), pages 441-459, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:telsys:v:87:y:2024:i:2:d:10.1007_s11235-024-01195-6. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.