IDEAS home Printed from https://ideas.repec.org/a/spr/telsys/v87y2024i2d10.1007_s11235-024-01185-8.html
   My bibliography  Save this article

IoT traffic management using deep learning based on osmotic cloud to edge computing

Author

Listed:
  • Zeinab Nazemi Absardi

    (Shiraz University of Technology)

  • Reza Javidan

    (Shiraz University of Technology)

Abstract

IoT is critical in many application areas, such as smart cities, health care, and surveillance systems. Each application has its own QoS requirements. Dynamic traffic management in an IoT network is essential for optimal load balancing and routing. It also allows applications to achieve their desired level of QoS. Osmotic computing is a paradigm for edge/cloud integration. In this paradigm, to balance the load of the network hosts, the services must migrate from a higher resource-utilized data center to a smaller one. According to the osmotic computing approach, each IoT application could be broken into some Micro-Elements (MELs), and each MEL resides on a resource on the edge or cloud data center. Usually, in an IoT osmotic environment, services must be executed by the edge hosts. Some remaining services must migrate to the cloud data centers if the edge hosts lack computational resources. Therefore, such data migration may produce massive traffic across the network. Moreover, the traffic sometimes must pass through a particular route, which includes some pre-specified nodes, for security or monitoring reasons. The routes must be optimized regarding QoS metrics such as delay, jitter, and packet loss ratio. Therefore, finding an optimal path between the source and the destination MEL is essential. Deep learning can facilitate this process by exploiting the massive routing data to find the optimal routes with pre-specified node(s). For this purpose, this paper proposes a new traffic management algorithm based on a deep RNN model. The algorithm predicts the alternative optimal routes, including the desired node (s), in an IoT osmotic environment. A collection of paths is generated using the minimum-distance maximum-bandwidth routing algorithm to create the dataset. The IoT osmotic environment consists of three main layers: the edge data center, Software-Defined Wide Area Network (SDWAN) infrastructure, and cloud data centers. The proposed traffic management algorithm is implemented in the controller of each layer. The simulation results showed that the osmotic approach increased the energy consumption of the edge devices and reduced the transaction time. Because the data is processed near the user, the flow size of the traffic, which is sent across the network, is reduced. The experimental results also showed that the model could achieve up to 94% accuracy. The model training and prediction time do not affect the application's total running time.

Suggested Citation

  • Zeinab Nazemi Absardi & Reza Javidan, 2024. "IoT traffic management using deep learning based on osmotic cloud to edge computing," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 87(2), pages 419-435, October.
  • Handle: RePEc:spr:telsys:v:87:y:2024:i:2:d:10.1007_s11235-024-01185-8
    DOI: 10.1007/s11235-024-01185-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11235-024-01185-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11235-024-01185-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:telsys:v:87:y:2024:i:2:d:10.1007_s11235-024-01185-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.