An improved DV-Hop algorithm based on PSO and Modified DE algorithm
Author
Abstract
Suggested Citation
DOI: 10.1007/s11235-023-00991-w
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Gaurav Sharma & Ashok Kumar, 2018. "Improved DV-Hop localization algorithm using teaching learning based optimization for wireless sensor networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 67(2), pages 163-178, February.
- Ash Mohammad Abbas, 2021. "Analysis of weighted centroid-based localization scheme for wireless sensor networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 78(4), pages 595-607, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xiuwu Yu & Yinhao Liu & Yong Liu, 2024. "Optimization of WSN localization algorithm based on improved multi-strategy seagull algorithm," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 86(3), pages 547-558, July.
- Hilary I. Okagbue & Muminu O. Adamu & Timothy A. Anake & Ashiribo S. Wusu, 2019. "Nature inspired quantile estimates of the Nakagami distribution," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 72(4), pages 517-541, December.
- Shilpi & Arvind Kumar, 2023. "A localization algorithm using reliable anchor pair selection and Jaya algorithm for wireless sensor networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 82(2), pages 277-289, February.
- Tapan Kumar Mohanta & Dushmanta Kumar Das, 2022. "Improved DV-Hop localization algorithm based on social learning class topper optimization for wireless sensor network," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 80(4), pages 529-543, August.
- Soumya J. Bhat & K. V. Santhosh, 2022. "Localization of isotropic and anisotropic wireless sensor networks in 2D and 3D fields," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 79(2), pages 309-321, February.
- Hend Liouane & Sana Messous & Omar Cheikhrouhou, 2022. "Regularized least square multi-hops localization algorithm based on DV-Hop for wireless sensor networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 80(3), pages 349-358, July.
More about this item
Keywords
Wireless sensor networks; DV-Hop; Differential evolution; Levy flight; Optimization; Localization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:telsys:v:82:y:2023:i:3:d:10.1007_s11235-023-00991-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.