IDEAS home Printed from https://ideas.repec.org/a/spr/telsys/v79y2022i2d10.1007_s11235-021-00858-y.html
   My bibliography  Save this article

Performance evaluation of monitoring IoT systems using LoRaWan

Author

Listed:
  • Christos Bouras

    (University of Patras)

  • Apostolos Gkamas

    (University Ecclesiastical Academy of Vella)

  • Vasileios Kokkinos

    (University of Patras)

  • Nikolaos Papachristos

    (University of Patras)

Abstract

The proliferation of smart devices, or even better, IoT devices, has led to the widespread development of applications that take advantage of these devices. Of particular interest is the precise localization of such a device. However, these use cases become extremely difficult when connectivity to end-devices is required even in areas where the signal is too low or different technologies co-exist for the transmission of the data. In this research work, we study LoRaWan and Wi-Fi as two possible candidates for data transmission. We are particularly focused on the study of the above technologies in terms of performance as well as application development that can be used as rescue monitoring systems. For this reason, we start by describing LoRa as an ideal low power and long-distance communication protocol on the IoT devices compared to the Wi-Fi network. We perform various simulations in terms of time on air transmission, bit error rate by changing important metrics to study the behavior of the whole mechanism. Based on our simulations, the main findings highlight that the contribution of a spreading factor and bandwidth optimizations can be applied to real hardware for real search and rescue (SAR) cases giving improved results in case of coverage and battery extension applications. As a continuation of our research, we developed a monitor application that collects and visualizes data from end-nodes (wearables). These data are processed gateway and network server to The Things Network (TTN) for further analysis. The proposed solution can be used in different rescue monitor scenarios such as identifying and find individuals of vulnerable groups or those belonging to group of people with a high probability of being lost. The purpose of the above solution is to overcome monitor problems on SAR cases, compare with WiFi and suggest a module supporting both technologies in order to be used in real experiments.

Suggested Citation

  • Christos Bouras & Apostolos Gkamas & Vasileios Kokkinos & Nikolaos Papachristos, 2022. "Performance evaluation of monitoring IoT systems using LoRaWan," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 79(2), pages 295-308, February.
  • Handle: RePEc:spr:telsys:v:79:y:2022:i:2:d:10.1007_s11235-021-00858-y
    DOI: 10.1007/s11235-021-00858-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11235-021-00858-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11235-021-00858-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongbo Sui & Hui Gao, 2022. "Adaptive echo state network based-channel prediction algorithm for the internet of things based on the IEEE 802.11ah standard," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 81(4), pages 503-526, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:telsys:v:79:y:2022:i:2:d:10.1007_s11235-021-00858-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.