IDEAS home Printed from https://ideas.repec.org/a/spr/telsys/v78y2021i1d10.1007_s11235-021-00785-y.html
   My bibliography  Save this article

Utility driven cooperative spectrum sensing scheduling for heterogeneous multi-channel cognitive radio networks

Author

Listed:
  • Prakash Chauhan

    (Tezpur Univeristy
    Cotton University)

  • Sanjib K. Deka

    (Tezpur Univeristy)

  • Bijoy Chand Chatterjee

    (South Asian University)

  • Nityananda Sarma

    (Tezpur Univeristy)

Abstract

Owing to the spectrum scarcity and energy constrained devices in wireless networks arises the demand for an efficient spectrum sensing technique which improves both sensing performance and energy efficiency for cognitive radio networks. This paper proposes a cooperative spectrum sensing scheduling (CSSS) scheme for heterogeneous multi-channel cognitive radio networks with the objective of finding an efficient sensing schedule to enhance network utility while keeping the energy depletion at a lower level. We start with formulating the CSSS problem as an optimization problem, which captures both the energy-performance and performance opportunity trade-offs. We prove that the formulated CSSS problem is non-deterministic polynomial hard (NP-hard). To tackle the higher computational complexity of the formulated problem, we propose a greedy-based heuristic solution, which produces a sub-optimal result in polynomial time. To reduce energy consumption during spectrum sensing, we make secondary users to adaptively decide on the sensing duration based on the received signal-to-noise ratio (SNR), where higher SNR leads to lower sensing duration and vice-versa. For enhancing network throughput, SUs sense multiple channels in the order of their suitability for data transmission to explore as many numbers of channels as possible within the permitted maximum sensing time. We consider erroneous nature of reporting channel to make the cooperative decision robust against errors during reporting. Simulation based results show the effectiveness of the proposed scheme in terms of utility, energy overhead, and the number of channels explored compared to similar schemes from literature.

Suggested Citation

  • Prakash Chauhan & Sanjib K. Deka & Bijoy Chand Chatterjee & Nityananda Sarma, 2021. "Utility driven cooperative spectrum sensing scheduling for heterogeneous multi-channel cognitive radio networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 78(1), pages 25-37, September.
  • Handle: RePEc:spr:telsys:v:78:y:2021:i:1:d:10.1007_s11235-021-00785-y
    DOI: 10.1007/s11235-021-00785-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11235-021-00785-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11235-021-00785-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Areej A. Malibari & Daniyal Alghazzawi & Maha M. A. Lashin, 2021. "Coalition Formation among the Cooperative Agents for Efficient Energy Consumption," Sustainability, MDPI, vol. 13(15), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:telsys:v:78:y:2021:i:1:d:10.1007_s11235-021-00785-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.