IDEAS home Printed from https://ideas.repec.org/a/spr/telsys/v76y2021i4d10.1007_s11235-020-00722-5.html
   My bibliography  Save this article

Fault detection in satellite power system using convolutional neural network

Author

Listed:
  • M Ganesan

    (Amrita Vishwa Vidyapeetham)

  • R Lavanya

    (Amrita Vishwa Vidyapeetham)

  • M Nirmala Devi

    (Amrita Vishwa Vidyapeetham)

Abstract

Satellite failures account for heavy, irreparable damages, especially when associated with the Power System which is the heart of a satellite. Anomalies in Satellite Power System (SPS) can lead to complete failure of the mission. This demands the need to understand the causes of power system related failures. Huge number of sensors installed in a satellite system conveys information regarding the health of the system. The conventional manual level checking of sensors can be augmented with data driven fault diagnosis approach to reduce the false alarm and burden on operating personnel. The latter has the advantage of exploiting the interrelationship between sensor measurements for fault diagnosis. In this work, Convolutional Neural Network (CNN) is trained on satellite telemetry data for sensor fault detection in SPS. Various processing schemes in time and frequency domains were explored to process the input data to CNN. Promising results were obtained with combination of Stockwell transform (S-transform) and CNN for data processing and classification, respectively. Advanced Diagnostics and Prognostics Testbed (ADAPT), a publicly-available dataset was analysed and used for validating the proposed algorithm, yielding an accuracy as high as 96.7%, precisison of 0.9, F1 score of 0.95 and AUC equal to 0.976.

Suggested Citation

  • M Ganesan & R Lavanya & M Nirmala Devi, 2021. "Fault detection in satellite power system using convolutional neural network," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 76(4), pages 505-511, April.
  • Handle: RePEc:spr:telsys:v:76:y:2021:i:4:d:10.1007_s11235-020-00722-5
    DOI: 10.1007/s11235-020-00722-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11235-020-00722-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11235-020-00722-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Ganesan & R. Lavanya, 2023. "Simultaneous fault detection in satellite power systems using deep autoencoders and classifier chain," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 83(1), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:telsys:v:76:y:2021:i:4:d:10.1007_s11235-020-00722-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.