IDEAS home Printed from https://ideas.repec.org/a/spr/telsys/v72y2019i3d10.1007_s11235-019-00571-x.html
   My bibliography  Save this article

Performance analysis of downlink and uplink decoupled access in clustered heterogeneous cellular networks

Author

Listed:
  • Mohammad Arif

    (COMSATS University Islamabad)

  • Shurjeel Wyne

    (COMSATS University Islamabad)

  • Junaid Ahmed

    (COMSATS University Islamabad)

Abstract

The performance of heterogeneous cellular networks (HCNs) is typically analyzed with the assumption that the users connect with the same base station in uplink and downlink. However, recent investigations have shown that downlink–uplink decoupling (DUDe) can provide network performance gains relative to the conventional coupled access. Many authors have evaluated HCN performance while assuming that the network users are distributed according to a homogeneous Poisson point process (HPPP). However, the HPPP cannot accurately model the uplink interference when the users are clustered in urban hotspots such as shopping malls and sports stadiums. This work investigates DUDe access for an HCN with user-clustering modeled by the Matern cluster process. We derive analytical expressions of the coverage probability and average throughput for DUDe access as well as the conventional coupled access. The results show that DUDe outperforms the coupled access scheme in terms of coverage and throughput. The user-clustering is also shown to benefit the coverage and throughput performance relative to the case of HPPP distributed users. The derived results are validated by Monte Carlo simulations.

Suggested Citation

  • Mohammad Arif & Shurjeel Wyne & Junaid Ahmed, 2019. "Performance analysis of downlink and uplink decoupled access in clustered heterogeneous cellular networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 72(3), pages 355-364, November.
  • Handle: RePEc:spr:telsys:v:72:y:2019:i:3:d:10.1007_s11235-019-00571-x
    DOI: 10.1007/s11235-019-00571-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11235-019-00571-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11235-019-00571-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muhammad Nadeem Sial & Junaid Ahmed, 2018. "Analysis of K-tier 5G heterogeneous cellular network with dual-connectivity and uplink–downlink decoupled access," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 67(4), pages 669-685, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sundus Ali & Muhammad Imran Aslam & Irfan Ahmed & Tayyaba Khurshid, 2020. "Analysis of the decoupled uplink downlink technique for varying path loss exponent in multi-tier HetNet," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 74(4), pages 497-510, August.
    2. Humayun Zubair Khan & Mudassar Ali & Muhammad Naeem & Imran Rashid & Adil Masood Siddiqui & Muhammad Imran & Shahid Mumtaz, 2021. "Joint admission control, cell association, power allocation and throughput maximization in decoupled 5G heterogeneous networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 76(1), pages 115-128, January.
    3. Sundus Ali & Muhammad Imran Aslam & Irfan Ahmed, 2019. "Uplink coverage probability and spectral efficiency for downlink uplink decoupled dense heterogeneous cellular network using multi-slope path loss model," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 72(4), pages 505-516, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sundus Ali & Muhammad Imran Aslam & Irfan Ahmed, 2019. "Uplink coverage probability and spectral efficiency for downlink uplink decoupled dense heterogeneous cellular network using multi-slope path loss model," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 72(4), pages 505-516, December.
    2. Sundus Ali & Muhammad Imran Aslam & Irfan Ahmed & Tayyaba Khurshid, 2020. "Analysis of the decoupled uplink downlink technique for varying path loss exponent in multi-tier HetNet," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 74(4), pages 497-510, August.
    3. Humayun Zubair Khan & Mudassar Ali & Muhammad Naeem & Imran Rashid & Adil Masood Siddiqui & Muhammad Imran & Shahid Mumtaz, 2021. "Joint admission control, cell association, power allocation and throughput maximization in decoupled 5G heterogeneous networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 76(1), pages 115-128, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:telsys:v:72:y:2019:i:3:d:10.1007_s11235-019-00571-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.