IDEAS home Printed from https://ideas.repec.org/a/spr/telsys/v68y2018i1d10.1007_s11235-017-0376-2.html
   My bibliography  Save this article

Accurate compressive data gathering in wireless sensor networks using weighted spatio-temporal compressive sensing

Author

Listed:
  • Saeed Mehrjoo

    (Shiraz University)

  • Farshad Khunjush

    (Shiraz University)

Abstract

The high number of transmissions in sensor nodes having a limited amount of energy leads to a drastic decrease in the lifetime of wireless sensor networks. For dense sensor networks, the provided data potentially have spatial and temporal correlations. The correlations between the data of the nodes make it possible to utilize compressive sensing theory during the data gathering phase; however, applying this technique leads to some errors during the reconstruction phase. In this paper, a method based on weighted spatial-temporal compressive sensing is proposed to improve the accuracy of the reconstructed data. Simulation results confirm that the reconstruction error of the proposed method is approximately 16 times less than the closest compared method. It should be noted that due to applying weighted spatial-temporal compressive sensing, some extra transmissions are posed to the network. However, considering both lifetime and accuracy factors as a compound metric, the proposed method yields a 12% improvement compared to the closest method in the literature.

Suggested Citation

  • Saeed Mehrjoo & Farshad Khunjush, 2018. "Accurate compressive data gathering in wireless sensor networks using weighted spatio-temporal compressive sensing," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 68(1), pages 79-88, May.
  • Handle: RePEc:spr:telsys:v:68:y:2018:i:1:d:10.1007_s11235-017-0376-2
    DOI: 10.1007/s11235-017-0376-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11235-017-0376-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11235-017-0376-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Reza Ghaderi & Vahid Tabataba Vakili & Mansour Sheikhan, 2021. "Compressive sensing-based energy consumption model for data gathering techniques in wireless sensor networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 77(1), pages 83-108, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:telsys:v:68:y:2018:i:1:d:10.1007_s11235-017-0376-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.