IDEAS home Printed from https://ideas.repec.org/a/spr/telsys/v65y2017i4d10.1007_s11235-016-0266-z.html
   My bibliography  Save this article

Centralized dynamic frequency allocation for cell-edge demand satisfaction in fractional frequency reuse networks

Author

Listed:
  • Maryum Hina

    (University of Engineering and Technology)

  • Sarmad Sohaib

    (University of Engineering and Technology)

Abstract

Fractional frequency reuse (FFR) has emerged as a well-suited remedy for inter-cell interference reduction in the next-generation networks by allocating frequency reuse factor (FRF) of unity for the cell-center (CC) and higher FRF for the cell-edge (CE) users. However, this strict FFR comes at a cost of equal partitioning of frequency resources to the CE which most likely has varying demands in current networks. In order to mitigate this, we propose a centralized dynamic resource allocation scheme which allocates demand-dependent resources to CE users. The proposed scheme therefore outperforms the fixed allocation scheme of strict FFR for both CC and CE users. Complexity analysis provides a fair means of analyzing the suitability of proposed algorithm. We have also compared the proposed methodology with a reference dynamic fractional frequency reuse (DFFR) scheme. Results show maximum performance gain of up to 30% for 3 reference cells employing Rayleigh fading—through normalized area spectral efficiency (ASE) analysis for both fixed allocation and DFFR. Spectral efficiency analysis also indicates per-cell performance gain for both CC and CE users. Further, detailed three-dimensional ASE plots give insights into the affects to other cells. Due to dynamic nature of traffic loads, the proposed scheme is a candidate solution for satisfying the demands of individual cells.

Suggested Citation

  • Maryum Hina & Sarmad Sohaib, 2017. "Centralized dynamic frequency allocation for cell-edge demand satisfaction in fractional frequency reuse networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 65(4), pages 795-808, August.
  • Handle: RePEc:spr:telsys:v:65:y:2017:i:4:d:10.1007_s11235-016-0266-z
    DOI: 10.1007/s11235-016-0266-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11235-016-0266-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11235-016-0266-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed Murkaz & Riaz Hussain & Junaid Ahmed & Muhammad Adil & Babatunji Omoniwa & Adeel Iqbal, 2018. "An intra–inter-cell device-to-device communication scheme to enhance 5G network throughput with delay modeling," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 69(4), pages 461-475, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:telsys:v:65:y:2017:i:4:d:10.1007_s11235-016-0266-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.