IDEAS home Printed from https://ideas.repec.org/a/spr/telsys/v65y2017i3d10.1007_s11235-016-0237-4.html
   My bibliography  Save this article

Monkey King Evolution: an enhanced ebb-tide-fish algorithm for global optimization and its application in vehicle navigation under wireless sensor network environment

Author

Listed:
  • Jeng-Shyang Pan

    (Fuzhou University of International Studies and Trade)

  • Zhenyu Meng

    (Harbin Institute of Technology Shenzhen Graduate School)

  • Shu-Chuan Chu

    (Flinders University)

  • Hua-Rong Xu

    (Xiamen University of Technology)

Abstract

Optimization algorithms are proposed to maximize the desirable properties while simultaneously minimizing the undesirable characteristics. Particle Swarm Optimization (PSO) is a famous optimization algorithm, and it has undergone many variants since its inception in 1995. Though different topologies and relations among particles are used in some state-of-the-art PSO variants, the overall performance on high dimensional multimodal optimization problem is still not very good. In this paper, we present a new memetic optimization algorithm, named Monkey King Evolutionary (MKE) algorithm, and give a comparative view of the PSO variants, including the canonical PSO, Inertia Weighted PSO, Constriction Coefficients PSO, Fully-Informed Particle Sawrm, Cooperative PSO, Comprehensive Learning PSO and some variants proposed in recent years, such as Dynamic Neighborhood Learning PSO, Social Learning Particle Swarm Optimization etc. The proposed MKE algorithm is a further work of ebb-tide-fish algorithm and what’s more it performs very well not only on unimodal benchmark functions but also on multimodal ones on high dimensions. Comparison results under CEC2013 test suite for real parameter optimization show that the proposed MKE algorithm outperforms state-of-the-art PSO variants significantly. An application of the vehicle navigation optimization is also discussed in the paper, and the conducted experiment shows that the proposed approach to path navigation optimization saves travel time of real-time traffic navigation in a micro-scope traffic networks.

Suggested Citation

  • Jeng-Shyang Pan & Zhenyu Meng & Shu-Chuan Chu & Hua-Rong Xu, 2017. "Monkey King Evolution: an enhanced ebb-tide-fish algorithm for global optimization and its application in vehicle navigation under wireless sensor network environment," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 65(3), pages 351-364, July.
  • Handle: RePEc:spr:telsys:v:65:y:2017:i:3:d:10.1007_s11235-016-0237-4
    DOI: 10.1007/s11235-016-0237-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11235-016-0237-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11235-016-0237-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hilary I. Okagbue & Muminu O. Adamu & Timothy A. Anake & Ashiribo S. Wusu, 2019. "Nature inspired quantile estimates of the Nakagami distribution," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 72(4), pages 517-541, December.
    2. Han-Dong Jia & Shu-Chuan Chu & Pei Hu & LingPing Kong & XiaoPeng Wang & Václav Snášel & Tong-Bang Jiang & Jeng-Shyang Pan, 2022. "Hybrid algorithm optimization for coverage problem in wireless sensor networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 80(1), pages 105-121, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:telsys:v:65:y:2017:i:3:d:10.1007_s11235-016-0237-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.