IDEAS home Printed from https://ideas.repec.org/a/spr/telsys/v64y2017i2d10.1007_s11235-016-0176-0.html
   My bibliography  Save this article

Energy adaptive MAC for wireless sensor networks with RF energy transfer: algorithm, analysis, and implementation

Author

Listed:
  • Jaeho Kim

    (Yonsei University
    Korea Electronics Technology Institute)

  • Jang-Won Lee

    (Yonsei University)

Abstract

Radio frequency energy transfer (RET) has been proposed as a promising solution to power sensor nodes in wireless sensor networks (WSNs). However, RET has a significant drawback to be directly applied to WSNs, i.e., unfairness in the achieved throughput among sensor nodes due to the difference of their energy harvesting rates that strongly depend on the distance between the energy emitting node and the energy harvesting nodes. The unfairness problem should be properly taken into account to mitigate the drawback caused from the features of RET. To resolve this issue, in this paper, we propose a medium access control (MAC) protocol for WSNs based on RET with two distinguishing features: energy adaptive (EA) duty cycle management that adaptively manages the duty cycle of sensor nodes according to their energy harvesting rates and EA contention algorithm that adaptively manages contentions among sensor nodes considering fairness. Through analysis and simulation, we show that our MAC protocol works well under the RET environment. Finally, to show the feasibility of WSNs with RET, we test our MAC protocol with a prototype system in a real environment.

Suggested Citation

  • Jaeho Kim & Jang-Won Lee, 2017. "Energy adaptive MAC for wireless sensor networks with RF energy transfer: algorithm, analysis, and implementation," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 64(2), pages 293-307, February.
  • Handle: RePEc:spr:telsys:v:64:y:2017:i:2:d:10.1007_s11235-016-0176-0
    DOI: 10.1007/s11235-016-0176-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11235-016-0176-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11235-016-0176-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeff Laninga & Ali Nasr Esfahani & Gevindu Ediriweera & Nathan Jacob & Behzad Kordi, 2023. "Monitoring Technologies for HVDC Transmission Lines," Energies, MDPI, vol. 16(13), pages 1-32, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:telsys:v:64:y:2017:i:2:d:10.1007_s11235-016-0176-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.