IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v65y2024i4d10.1007_s00362-023-01492-3.html
   My bibliography  Save this article

ROBOUT: a conditional outlier detection methodology for high-dimensional data

Author

Listed:
  • Matteo Farnè

    (University of Bologna)

  • Angelos Vouldis

    (European Central Bank)

Abstract

This paper presents a methodology, called ROBOUT, to identify outliers conditional on a high-dimensional noisy information set. In particular, ROBOUT is able to identify observations with outlying conditional mean or variance when the dataset contains multivariate outliers in or besides the predictors, multi-collinearity, and a large variable dimension compared to the sample size. ROBOUT entails a pre-processing step, a preliminary robust imputation procedure that prevents anomalous instances from corrupting predictor recovery, a selection stage of the statistically relevant predictors (through cross-validated LASSO-penalized Huber loss regression), the estimation of a robust regression model based on the selected predictors (via MM regression), and a criterion to identify conditional outliers. We conduct a comprehensive simulation study in which the proposed algorithm is tested under a wide range of perturbation scenarios. The combination formed by LASSO-penalized Huber loss and MM regression turns out to be the best in terms of conditional outlier detection under the above described perturbed conditions, also compared to existing integrated methodologies like Sparse Least Trimmed Squares and Robust Least Angle Regression. Furthermore, the proposed methodology is applied to a granular supervisory banking dataset collected by the European Central Bank, in order to model the total assets of euro area banks.

Suggested Citation

  • Matteo Farnè & Angelos Vouldis, 2024. "ROBOUT: a conditional outlier detection methodology for high-dimensional data," Statistical Papers, Springer, vol. 65(4), pages 2489-2525, June.
  • Handle: RePEc:spr:stpapr:v:65:y:2024:i:4:d:10.1007_s00362-023-01492-3
    DOI: 10.1007/s00362-023-01492-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-023-01492-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-023-01492-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:65:y:2024:i:4:d:10.1007_s00362-023-01492-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.