IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v65y2024i4d10.1007_s00362-023-01487-0.html
   My bibliography  Save this article

Bounds on generalized family-wise error rates for normal distributions

Author

Listed:
  • Monitirtha Dey

    (Indian Statistical Institute)

  • Subir Kumar Bhandari

    (Indian Statistical Institute)

Abstract

The Bonferroni procedure has been one of the foremost frequentist approaches for controlling the family-wise error rate (FWER) in simultaneous inference. However, many scientific disciplines often require less stringent error rates. One such measure is the generalized family-wise error rate (gFWER) proposed (Lehmann and Romano in Ann Stat 33(3):1138–1154, 2005, https://doi.org/10.1214/009053605000000084 ). FWER or gFWER controlling methods are considered highly conservative in problems with a moderately large number of hypotheses. Although, the existing literature lacks a theory on the extent of the conservativeness of gFWER controlling procedures under dependent frameworks. In this note, we address this gap in a unified manner by establishing upper bounds for the gFWER under arbitrarily correlated multivariate normal setups with moderate dimensions. Towards this, we derive a new probability inequality which, in turn, extends and sharpens a classical inequality. Our results also generalize a recent related work by the first author.

Suggested Citation

  • Monitirtha Dey & Subir Kumar Bhandari, 2024. "Bounds on generalized family-wise error rates for normal distributions," Statistical Papers, Springer, vol. 65(4), pages 2313-2326, June.
  • Handle: RePEc:spr:stpapr:v:65:y:2024:i:4:d:10.1007_s00362-023-01487-0
    DOI: 10.1007/s00362-023-01487-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-023-01487-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-023-01487-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:65:y:2024:i:4:d:10.1007_s00362-023-01487-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.