IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v65y2024i3d10.1007_s00362-023-01452-x.html
   My bibliography  Save this article

Finite mixtures of mean-parameterized Conway–Maxwell–Poisson models

Author

Listed:
  • Dongying Zhan

    (University of Kentucky)

  • Derek S. Young

    (University of Kentucky)

Abstract

For modeling count data, the Conway–Maxwell–Poisson (CMP) distribution is a popular generalization of the Poisson distribution due to its ability to characterize data over- or under-dispersion. While the classic parameterization of the CMP has been well-studied, its main drawback is that it is does not directly model the mean of the counts. This is mitigated by using a mean-parameterized version of the CMP distribution. In this work, we are concerned with the setting where count data may be comprised of subpopulations, each possibly having varying degrees of data dispersion. Thus, we propose a finite mixture of mean-parameterized CMP distributions. An EM algorithm is constructed to perform maximum likelihood estimation of the model, while bootstrapping is employed to obtain estimated standard errors. A simulation study is used to demonstrate the flexibility of the proposed mixture model relative to mixtures of Poissons and mixtures of negative binomials. An analysis of dog mortality data is presented.

Suggested Citation

  • Dongying Zhan & Derek S. Young, 2024. "Finite mixtures of mean-parameterized Conway–Maxwell–Poisson models," Statistical Papers, Springer, vol. 65(3), pages 1469-1492, May.
  • Handle: RePEc:spr:stpapr:v:65:y:2024:i:3:d:10.1007_s00362-023-01452-x
    DOI: 10.1007/s00362-023-01452-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-023-01452-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-023-01452-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:65:y:2024:i:3:d:10.1007_s00362-023-01452-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.