IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v65y2024i2d10.1007_s00362-023-01418-z.html
   My bibliography  Save this article

A novel copula-based approach for parametric estimation of univariate time series through its covariance decay

Author

Listed:
  • Guilherme Pumi

    (Programa de Pós-Graduação em Estatística-Universidade Federal do Rio Grande do Sul)

  • Taiane S. Prass

    (Programa de Pós-Graduação em Estatística-Universidade Federal do Rio Grande do Sul)

  • Sílvia R. C. Lopes

    (Programa de Pós-Graduação em Matemática-Universidade Federal do Rio Grande do Sul)

Abstract

In this note we develop a new technique for parameter estimation of univariate time series by means of a parametric copula approach. The proposed methodology is based on a relationship between a process’ covariance decay and parametric bivariate copulas associated to lagged variables. This relationship provides a way for estimating parameters that are identifiable through the process’ covariance decay, such as in long range dependent processes. We provide a rigorous asymptotic theory for the proposed estimator. We also present a Monte Carlo simulation study to asses the finite sample performance of the proposed estimator.

Suggested Citation

  • Guilherme Pumi & Taiane S. Prass & Sílvia R. C. Lopes, 2024. "A novel copula-based approach for parametric estimation of univariate time series through its covariance decay," Statistical Papers, Springer, vol. 65(2), pages 1041-1063, April.
  • Handle: RePEc:spr:stpapr:v:65:y:2024:i:2:d:10.1007_s00362-023-01418-z
    DOI: 10.1007/s00362-023-01418-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-023-01418-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-023-01418-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:65:y:2024:i:2:d:10.1007_s00362-023-01418-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.