IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v65y2024i1d10.1007_s00362-022-01388-8.html
   My bibliography  Save this article

On the distribution of sample scale-free scatter matrices

Author

Listed:
  • A. M. Mathai

    (McGill University)

  • Serge B. Provost

    (The University of Western Ontario)

Abstract

This paper addresses certain distributional aspects of a scale-free scatter matrix denoted by R that is stemming from a matrix-variate gamma distribution having a positive definite scale parameter matrix B. Under the assumption that B is a diagonal matrix, a structural representation of the determinant of R is derived; the exact density functions of products and ratios of determinants of matrices possessing such a structure are obtained; a closed form expression is given for the density function of R. Moreover, a novel procedure is utilized to establish that certain functions of the determinant of the sample scatter matrix are asymptotically distributed as chi-square or normal random variables. Then, representations of the density function of R that respectively involve multiple integrals, multiple series and Gauss’ hypergeometric function are provided for the general case of a positive definite scale parameter matrix, and an illustrative numerical example is presented. Cutting-edge mathematical techniques have been employed to derive the results. Naturally, they also apply to the conventional sample correlation matrix which is encountered in various multivariate inference contexts.

Suggested Citation

  • A. M. Mathai & Serge B. Provost, 2024. "On the distribution of sample scale-free scatter matrices," Statistical Papers, Springer, vol. 65(1), pages 121-138, February.
  • Handle: RePEc:spr:stpapr:v:65:y:2024:i:1:d:10.1007_s00362-022-01388-8
    DOI: 10.1007/s00362-022-01388-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-022-01388-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-022-01388-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:65:y:2024:i:1:d:10.1007_s00362-022-01388-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.