IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v64y2023i6d10.1007_s00362-022-01377-x.html
   My bibliography  Save this article

A class of estimators based on overlapping sample spacings

Author

Listed:
  • Rahul Singh

    (Indian Institute of Technology Kanpur)

  • Neeraj Misra

    (Indian Institute of Technology Kanpur)

Abstract

In parametric models, minimising different estimators of the Kullback–Leibler divergence between the empirical distribution function and the true distribution function yield the maximum likelihood estimator (MLE) and the maximum spacings product estimator. This approach has been extended in the literature to minimise some estimators of Csisźar divergence between the empirical distribution function and the true distribution function. Such estimators based on disjoint spacings have recently been studied in the literature. This paper considers analogues of these estimators based on overlapping sample spacings. The estimators have been found to be consistent and asymptotically normally distributed under a broad set of regularity conditions. Asymptotically and for any fixed order of spacings, such estimators are at least as good as the corresponding estimators based on non-overlapping spacings. Simulation studies show that some of these estimators perform better than the MLE for contaminated models. An application to real data reveals that the considered estimators can perform better than the MLE for parsimonious models.

Suggested Citation

  • Rahul Singh & Neeraj Misra, 2023. "A class of estimators based on overlapping sample spacings," Statistical Papers, Springer, vol. 64(6), pages 2137-2160, December.
  • Handle: RePEc:spr:stpapr:v:64:y:2023:i:6:d:10.1007_s00362-022-01377-x
    DOI: 10.1007/s00362-022-01377-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-022-01377-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-022-01377-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:64:y:2023:i:6:d:10.1007_s00362-022-01377-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.