IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v64y2023i1d10.1007_s00362-022-01309-9.html
   My bibliography  Save this article

Convergence of estimative density: criterion for model complexity and sample size

Author

Listed:
  • Yo Sheena

    (Shiga University
    Institute of Statistical Mathematics)

Abstract

For a parametric model of distributions, the closest distribution in the model to the true distribution located outside the model is considered. Measuring the closeness between two distributions with the Kullback–Leibler divergence, the closest distribution is called the “information projection.” The estimation risk of the maximum likelihood estimator is defined as the expectation of Kullback–Leibler divergence between the information projection and the maximum likelihood estimative density (the predictive distribution with the plugged-in maximum likelihood estimator). Here, the asymptotic expansion of the risk is derived up to the second order in the sample size, and the sufficient condition on the risk for the Bayes error rate between the predictive distribution and the information projection to be lower than a specified value is investigated. Combining these results, the “p/n criterion” is proposed, which determines whether the estimative density is sufficiently close to the information projection for the given model and sample. This criterion can constitute a solution to the sample size or model selection problem. The use of the p/n criteria is demonstrated for two practical datasets.

Suggested Citation

  • Yo Sheena, 2023. "Convergence of estimative density: criterion for model complexity and sample size," Statistical Papers, Springer, vol. 64(1), pages 117-137, February.
  • Handle: RePEc:spr:stpapr:v:64:y:2023:i:1:d:10.1007_s00362-022-01309-9
    DOI: 10.1007/s00362-022-01309-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-022-01309-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-022-01309-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:64:y:2023:i:1:d:10.1007_s00362-022-01309-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.