IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v62y2021i4d10.1007_s00362-020-01166-4.html
   My bibliography  Save this article

Efficient estimation for the volatility of stochastic interest rate models

Author

Listed:
  • Yuping Song

    (Shanghai Normal University)

  • Hangyan Li

    (Shanghai Normal University)

  • Yetong Fang

    (Renmin University of China)

Abstract

The joint analysis of non-stationary and high frequency financial data poses theoretical challenges due to that such massive data varies with time and possesses no fixed density function. This paper proposes the local linear smoothing to estimate the unknown volatility function in scalar diffusion models based on Gamma asymmetric kernels for high frequency financial big data. Under the mild conditions, we obtain the asymptotic normality for the estimator at both interior and boundary design points. Besides the standard properties of the local linear estimator such as simple bias representation and boundary bias correction, the local linear smoothing using Gamma asymmetric kernels possesses some extra advantages such as variance reduction and resistance to sparse design, which is validated through finite sample simulation study and empirical analysis on 6-month Shanghai Interbank Offered Rate (abbreviated as Shibor) in China.

Suggested Citation

  • Yuping Song & Hangyan Li & Yetong Fang, 2021. "Efficient estimation for the volatility of stochastic interest rate models," Statistical Papers, Springer, vol. 62(4), pages 1939-1964, August.
  • Handle: RePEc:spr:stpapr:v:62:y:2021:i:4:d:10.1007_s00362-020-01166-4
    DOI: 10.1007/s00362-020-01166-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-020-01166-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-020-01166-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan J. & Zhang C., 2003. "A Reexamination of Diffusion Estimators With Applications to Financial Model Validation," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 118-134, January.
    2. Song Chen, 2000. "Probability Density Function Estimation Using Gamma Kernels," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(3), pages 471-480, September.
    3. Song Chen, 2002. "Local Linear Smoothers Using Asymmetric Kernels," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(2), pages 312-323, June.
    4. Park, Joon Y & Phillips, Peter C B, 2001. "Nonlinear Regressions with Integrated Time Series," Econometrica, Econometric Society, vol. 69(1), pages 117-161, January.
    5. Federico M. Bandi & Peter C. B. Phillips, 2003. "Fully Nonparametric Estimation of Scalar Diffusion Models," Econometrica, Econometric Society, vol. 71(1), pages 241-283, January.
    6. Fan, Jianqing & Fan, Yingying & Jiang, Jiancheng, 2007. "Dynamic Integration of Time- and State-Domain Methods for Volatility Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 618-631, June.
    7. Phillips, Peter C.B. & Magdalinos, Tassos, 2007. "Limit theory for moderate deviations from a unit root," Journal of Econometrics, Elsevier, vol. 136(1), pages 115-130, January.
    8. Jiang, George J. & Knight, John L., 1997. "A Nonparametric Approach to the Estimation of Diffusion Processes, With an Application to a Short-Term Interest Rate Model," Econometric Theory, Cambridge University Press, vol. 13(5), pages 615-645, October.
    9. Hui Jiang & Xing Dong, 2015. "Parameter estimation for the non-stationary Ornstein–Uhlenbeck process with linear drift," Statistical Papers, Springer, vol. 56(1), pages 257-268, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ye, Xu-Guo & Lin, Jin-Guan & Zhao, Yan-Yong & Hao, Hong-Xia, 2015. "Two-step estimation of the volatility functions in diffusion models with empirical applications," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 135-159.
    2. Aït-Sahalia, Yacine & Park, Joon Y., 2016. "Bandwidth selection and asymptotic properties of local nonparametric estimators in possibly nonstationary continuous-time models," Journal of Econometrics, Elsevier, vol. 192(1), pages 119-138.
    3. Gospodinov, Nikolay & Hirukawa, Masayuki, 2012. "Nonparametric estimation of scalar diffusion models of interest rates using asymmetric kernels," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 595-609.
    4. Bouezmarni, Taoufik & Rombouts, Jeroen V.K., 2010. "Nonparametric density estimation for positive time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 245-261, February.
    5. Yuping Song & Weijie Hou & Guang Yang, 2020. "Asymptotic Normality of Convoluted Smoothed Kernel Estimation for Scalar Diffusion Model," Methodology and Computing in Applied Probability, Springer, vol. 22(1), pages 191-221, March.
    6. Nikolay Gospodinov & Masayuki Hirukawa, 2008. "Time Series Nonparametric Regression Using Asymmetric Kernels with an Application to Estimation of Scalar Diffusion Processes," CIRJE F-Series CIRJE-F-573, CIRJE, Faculty of Economics, University of Tokyo.
    7. Renò, Roberto, 2008. "Nonparametric Estimation Of The Diffusion Coefficient Of Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 24(5), pages 1174-1206, October.
    8. Yamamura, Mariko & Shoji, Isao, 2010. "A nonparametric method of multi-step ahead forecasting in diffusion processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(12), pages 2408-2415.
    9. Kristensen, Dennis, 2008. "Estimation of partial differential equations with applications in finance," Journal of Econometrics, Elsevier, vol. 144(2), pages 392-408, June.
    10. Chen, Qiang & Zheng, Xu & Pan, Zhiyuan, 2015. "Asymptotically distribution-free tests for the volatility function of a diffusion," Journal of Econometrics, Elsevier, vol. 184(1), pages 124-144.
    11. Park, Joon Y. & Wang, Bin, 2021. "Nonparametric estimation of jump diffusion models," Journal of Econometrics, Elsevier, vol. 222(1), pages 688-715.
    12. Bu, Ruijun & Kim, Jihyun & Wang, Bin, 2023. "Uniform and Lp convergences for nonparametric continuous time regressions with semiparametric applications," Journal of Econometrics, Elsevier, vol. 235(2), pages 1934-1954.
    13. Manuel Arapis & Jiti Gao, 2006. "Empirical Comparisons in Short-Term Interest Rate Models Using Nonparametric Methods," Journal of Financial Econometrics, Oxford University Press, vol. 4(2), pages 310-345.
    14. Xu, Ke-Li, 2010. "Reweighted Functional Estimation Of Diffusion Models," Econometric Theory, Cambridge University Press, vol. 26(2), pages 541-563, April.
    15. Christian Gourieroux & Hung T. Nguyen & Songsak Sriboonchitta, 2017. "Nonparametric estimation of a scalar diffusion model from discrete time data: a survey," Annals of Operations Research, Springer, vol. 256(2), pages 203-219, September.
    16. Nikolay Gospodinov & Masayuki Hirukawa, 2008. "Nonparametric Estimation of Scalar Diffusion Processes of Interest Rates Using Asymmetric Kernels," Working Papers 08011, Concordia University, Department of Economics, revised Dec 2008.
    17. Kanaya, Shin, 2017. "Uniform Convergence Rates Of Kernel-Based Nonparametric Estimators For Continuous Time Diffusion Processes: A Damping Function Approach," Econometric Theory, Cambridge University Press, vol. 33(4), pages 874-914, August.
    18. Muhammad Hanif, 2011. "Reweighted Nadaraya-Watson estimator of scalar diffusion models by using asymmetric kernels," Far East Journal of Psychology and Business, Far East Research Centre, vol. 4(5), pages 53-69, July.
    19. Zongwu Cai & Yongmiao Hong, 2013. "Some Recent Developments in Nonparametric Finance," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    20. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:62:y:2021:i:4:d:10.1007_s00362-020-01166-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.