IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v60y2019i4d10.1007_s00362-016-0863-7.html
   My bibliography  Save this article

Bayesian inference in measurement error models from objective priors for the bivariate normal distribution

Author

Listed:
  • Mário Castro

    (Universidade de São Paulo)

  • Ignacio Vidal

    (Universidad de Talca)

Abstract

In regression analysis, when the covariates are not exactly observed, measurement error models extend the usual regression models toward a more realistic representation of the covariates. It is common in the literature to directly propose prior distributions for the parameters in normal measurement error models. Posterior inference requires Markov chain Monte Carlo (MCMC) computations. However, the regression model can be seen as a reparameterization of the bivariate normal distribution. In this paper, general results for objective Bayesian inference under the bivariate normal distribution were adapted to the regression framework. So, posterior inferences for the structural parameters of a measurement error model under a great variety of priors were obtained in a simple way. The methodology is illustrated by using five common prior distributions showing good performance for all prior distributions considered. MCMC methods are not necessary at all. Model assessment is also discussed. Results from a simulation study and applications to real data sets are reported.

Suggested Citation

  • Mário Castro & Ignacio Vidal, 2019. "Bayesian inference in measurement error models from objective priors for the bivariate normal distribution," Statistical Papers, Springer, vol. 60(4), pages 1059-1078, August.
  • Handle: RePEc:spr:stpapr:v:60:y:2019:i:4:d:10.1007_s00362-016-0863-7
    DOI: 10.1007/s00362-016-0863-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-016-0863-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-016-0863-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heleno Bolfarine & Lisbeth Cordani, 1993. "Estimation of a structural linear regression model with a known reliability ratio," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 45(3), pages 531-540, September.
    2. Mário Castro & Heleno Bolfarine & M. Galea, 2013. "Bayesian inference in measurement error models for replicated data," Environmetrics, John Wiley & Sons, Ltd., vol. 24(1), pages 22-30, February.
    3. Vidal, Ignacio & Iglesias, Pilar, 2008. "Comparison between a measurement error model and a linear model without measurement error," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 92-102, September.
    4. Victor Lachos & Vicente Cancho & Reiko Aoki, 2010. "Bayesian analysis of skew-t multivariate null intercept measurement error model," Statistical Papers, Springer, vol. 51(3), pages 531-545, September.
    5. Fang, Kai-Tai & Li, Runze, 1999. "Bayesian Statistical Inference on Elliptical Matrix Distributions," Journal of Multivariate Analysis, Elsevier, vol. 70(1), pages 66-85, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernández, Carmen & Osiewalski, Jacek & Steel, Mark F. J., 2001. "Robust Bayesian Inference on Scale Parameters," Journal of Multivariate Analysis, Elsevier, vol. 77(1), pages 54-72, April.
    2. Vidal, Ignacio & Iglesias, Pilar, 2008. "Comparison between a measurement error model and a linear model without measurement error," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 92-102, September.
    3. Jiang, Jie & Wang, Lichun, 2024. "Bayes minimax estimator of the mean vector in an elliptically contoured distribution," Statistics & Probability Letters, Elsevier, vol. 213(C).
    4. Liu, Jin Shan & Ip, Wai Cheung & Wong, Heung, 2009. "Predictive inference for singular multivariate elliptically contoured distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1440-1446, August.
    5. Chung, Hee Cheol & Ahn, Jeongyoun, 2021. "Subspace rotations for high-dimensional outlier detection," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    6. Vidal, Ignacio & Arellano-Valle, Reinaldo B., 2010. "Bayesian inference for dependent elliptical measurement error models," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2587-2597, November.
    7. Jurecková, Jana & Picek, Jan & Saleh, A.K.Md. Ehsanes, 2010. "Rank tests and regression rank score tests in measurement error models," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3108-3120, December.
    8. Díaz-García, José A. & Gutiérrez-Jáimez, Ramón, 2011. "Distributions of the compound and scale mixture of vector and spherical matrix variate elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 143-152, January.
    9. M. Arashi & B. Kibria & A. Tajadod, 2015. "On shrinkage estimators in matrix variate elliptical models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(1), pages 29-44, January.
    10. Chuancun Yin & Jing Yao & Yang Yang, 2024. "Hessian and increasing-Hessian orderings of multivariate skew-elliptical random vectors with applications in actuarial science," Statistical Papers, Springer, vol. 65(7), pages 4715-4744, September.
    11. Nian-Sheng Tang & De-Wang Li & An-Min Tang, 2017. "Semiparametric Bayesian inference on generalized linear measurement error models," Statistical Papers, Springer, vol. 58(4), pages 1091-1113, December.
    12. Kibria, B.M. Golam, 2006. "The matrix-t distribution and its applications in predictive inference," Journal of Multivariate Analysis, Elsevier, vol. 97(3), pages 785-795, March.
    13. Arellano-Valle, R.B. & Ozan, S. & Bolfarine, H. & Lachos, V.H., 2005. "Skew normal measurement error models," Journal of Multivariate Analysis, Elsevier, vol. 96(2), pages 265-281, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:60:y:2019:i:4:d:10.1007_s00362-016-0863-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.