IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v59y2018i2d10.1007_s00362-016-0777-4.html
   My bibliography  Save this article

Distribution under elliptical symmetry of a distance-based multivariate coefficient of variation

Author

Listed:
  • S. Aerts

    (HEC-ULg, University of Liege (ULg, N1))

  • G. Haesbroeck

    (Department of Mathematics, University of Liege (ULg, zone Polytech 1))

  • C. Ruwet

    (Haute Ecole Prov. de Liège, Service de Math.)

Abstract

In the univariate setting, the coefficient of variation is widely used to measure the relative dispersion of a random variable with respect to its mean. Several extensions of the univariate coefficient of variation to the multivariate setting have been introduced in the literature. In this paper, we focus on a distance-based multivariate coefficient of variation. First, some real examples are discussed to motivate the use of the considered multivariate dispersion measure. Then, the asymptotic distribution of several estimators is analyzed under elliptical symmetry and used to construct approximate parametric confidence intervals that are compared with non-parametric intervals in a simulation study. Under normality, the exact distribution of the classical estimator is derived. As this natural estimator is biased, some bias corrections are proposed and compared by means of simulations.

Suggested Citation

  • S. Aerts & G. Haesbroeck & C. Ruwet, 2018. "Distribution under elliptical symmetry of a distance-based multivariate coefficient of variation," Statistical Papers, Springer, vol. 59(2), pages 545-579, June.
  • Handle: RePEc:spr:stpapr:v:59:y:2018:i:2:d:10.1007_s00362-016-0777-4
    DOI: 10.1007/s00362-016-0777-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-016-0777-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-016-0777-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. MacKinnon, James G. & Smith Jr., Anthony A., 1998. "Approximate bias correction in econometrics," Journal of Econometrics, Elsevier, vol. 85(2), pages 205-230, August.
    2. Aerts, S. & Haesbroeck, G. & Ruwet, C., 2015. "Multivariate coefficients of variation: Comparison and influence functions," Journal of Multivariate Analysis, Elsevier, vol. 142(C), pages 183-198.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ditzhaus, Marc & Smaga, Łukasz, 2022. "Permutation test for the multivariate coefficient of variation in factorial designs," Journal of Multivariate Analysis, Elsevier, vol. 187(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Müller, Ulrich K. & Wang, Yulong, 2019. "Nearly weighted risk minimal unbiased estimation," Journal of Econometrics, Elsevier, vol. 209(1), pages 18-34.
    2. George Kapetanios, 2003. "Determining the Stationarity Properties of Individual Series in Panel Datasets," Working Papers 495, Queen Mary University of London, School of Economics and Finance.
    3. Kim, Jae H. & Fraser, Iain & Hyndman, Rob J., 2011. "Improved interval estimation of long run response from a dynamic linear model: A highest density region approach," Computational Statistics & Data Analysis, Elsevier, vol. 55(8), pages 2477-2489, August.
    4. Yu, Jun, 2012. "Bias in the estimation of the mean reversion parameter in continuous time models," Journal of Econometrics, Elsevier, vol. 169(1), pages 114-122.
    5. Joseph Reath & Jianping Dong & Min Wang, 2018. "Improved parameter estimation of the log-logistic distribution with applications," Computational Statistics, Springer, vol. 33(1), pages 339-356, March.
    6. Yu, Jun, 2014. "Econometric Analysis Of Continuous Time Models: A Survey Of Peter Phillips’S Work And Some New Results," Econometric Theory, Cambridge University Press, vol. 30(4), pages 737-774, August.
    7. Marcet, Albert & Jarociński, Marek, 2010. "Autoregressions in small samples, priors about observables and initial conditions," Working Paper Series 1263, European Central Bank.
    8. Das, Tirthatanmoy & Polachek, Solomon W., 2017. "Estimating labor force joiners and leavers using a heterogeneity augmented two-tier stochastic frontier," Journal of Econometrics, Elsevier, vol. 199(2), pages 156-172.
    9. Ospina, Raydonal & Cribari-Neto, Francisco & Vasconcellos, Klaus L.P., 2006. "Improved point and interval estimation for a beta regression model," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 960-981, November.
    10. Demos Antonis & Kyriakopoulou Dimitra, 2019. "Finite-Sample Theory and Bias Correction of Maximum Likelihood Estimators in the EGARCH Model," Journal of Time Series Econometrics, De Gruyter, vol. 11(1), pages 1-20, January.
    11. Lemonte, Artur J. & Cribari-Neto, Francisco & Vasconcellos, Klaus L.P., 2007. "Improved statistical inference for the two-parameter Birnbaum-Saunders distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4656-4681, May.
    12. Martin A. Carree, 2002. "Nearly Unbiased Estimation in Dynamic Panel Data Models with Exogenous Variables," Tinbergen Institute Discussion Papers 02-007/2, Tinbergen Institute.
    13. Jason S. Bergtold & Elizabeth A. Yeager & Allen M. Featherstone, 2018. "Inferences from logistic regression models in the presence of small samples, rare events, nonlinearity, and multicollinearity with observational data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(3), pages 528-546, February.
    14. Robert Jung & Gerd Ronning & A. Tremayne, 2005. "Estimation in conditional first order autoregression with discrete support," Statistical Papers, Springer, vol. 46(2), pages 195-224, April.
    15. Simonovska, Ina & Waugh, Michael E., 2014. "The elasticity of trade: Estimates and evidence," Journal of International Economics, Elsevier, vol. 92(1), pages 34-50.
    16. MacKinnon, James G. & Smith Jr., Anthony A., 1998. "Approximate bias correction in econometrics," Journal of Econometrics, Elsevier, vol. 85(2), pages 205-230, August.
    17. Min Weng & Jianhua Pi & Bingqing Tan & Shiliang Su & Zhongliang Cai, 2017. "Area Deprivation and Liver Cancer Prevalence in Shenzhen, China: A Spatial Approach Based on Social Indicators," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 133(1), pages 317-332, August.
    18. Peter C. B. Phillips & Yangru Wu & Jun Yu, 2011. "EXPLOSIVE BEHAVIOR IN THE 1990s NASDAQ: WHEN DID EXUBERANCE ESCALATE ASSET VALUES?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(1), pages 201-226, February.
    19. Boudoukh, Jacob & Israel, Ronen & Richardson, Matthew, 2022. "Biases in long-horizon predictive regressions," Journal of Financial Economics, Elsevier, vol. 145(3), pages 937-969.
    20. Oliver D. Bunn & Robert J. Shiller, "undated". "Changing Times, Changing Values: A Historical Analysis of Sectors within the US Stock Market 1872-2013," Cowles Foundation Discussion Papers 1950, Cowles Foundation for Research in Economics, Yale University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:59:y:2018:i:2:d:10.1007_s00362-016-0777-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.