IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v58y2017i1d10.1007_s00362-015-0686-y.html
   My bibliography  Save this article

Confidence intervals for population means of partially paired observations

Author

Listed:
  • Nicole Fuchs

    (Universität Salzburg)

  • Werner Pölz

    (J. Kepler University Linz)

  • Arne C. Bathke

    (Universität Salzburg
    University of Kentucky)

Abstract

We propose a new method to make inference about an eye parameter based on data that contains measurements on both eyes for some subjects, and measurements on only one eye on the others. Subject effects are modeled as additive and random, and correlation between observations on the same subject are taken into account. We derive confidence intervals for the parameter of interest, using unbiased estimators of mean and variance, and yielding explicit formulas. The results are compared to approaches commonly used in the literature, using theoretical considerations and a simulation study. The method works well even for small to moderate sample sizes, for continuous and for discrete data, and it is applicable generally for the situation where data is collected partially in pairs and partially in singles, and inference is to be made about a common location parameter. The conclusions as to how one should best average correlated data may be surprising, and somewhat revising conventional wisdom.

Suggested Citation

  • Nicole Fuchs & Werner Pölz & Arne C. Bathke, 2017. "Confidence intervals for population means of partially paired observations," Statistical Papers, Springer, vol. 58(1), pages 35-51, March.
  • Handle: RePEc:spr:stpapr:v:58:y:2017:i:1:d:10.1007_s00362-015-0686-y
    DOI: 10.1007/s00362-015-0686-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-015-0686-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-015-0686-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harrar, Solomon W. & Feyasa, Merga B. & Wencheko, Eshetu, 2020. "Nonparametric procedures for partially paired data in two groups," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:58:y:2017:i:1:d:10.1007_s00362-015-0686-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.