IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v54y2013i3p695-708.html
   My bibliography  Save this article

Linear models that allow perfect estimation

Author

Listed:
  • Ronald Christensen
  • Yong Lin

Abstract

The general Gauss–Markov model, Y = Xβ + e, E(e) = 0, Cov(e) = σ 2 V, has been intensively studied and widely used. Most studies consider covariance matrices V that are nonsingular but we focus on the most difficult case wherein C(X), the column space of X, is not contained in C(V). This forces V to be singular. Under this condition there exist nontrivial linear functions of Q′Xβ that are known with probability 1 (perfectly) where $${C(Q)=C(V)^\perp}$$ . To treat $${C(X) \not \subset C(V)}$$ , much of the existing literature obtains estimates and tests by replacing V with a pseudo-covariance matrix T = V + XUX′ for some nonnegative definite U such that $${C(X) \subset C(T)}$$ , see Christensen (Plane answers to complex questions: the theory of linear models, 2002 , Chap. 10). We find it more intuitive to first eliminate what is known about Xβ and then to adjust X while keeping V unchanged. We show that we can decompose β into the sum of two orthogonal parts, β = β 0 + β 1 , where β 0 is known. We also show that the unknown component of X β is $${X\beta_1 \equiv \tilde{X} \gamma}$$ , where $${C(\tilde{X})=C(X)\cap C(V)}$$ . We replace the original model with $${Y-X\beta_0=\tilde{X}\gamma+e}$$ , E(e) = 0, $${Cov(e)=\sigma^2V}$$ and perform estimation and tests under this new model for which the simplifying assumption $${C(\tilde{X}) \subset C(V)}$$ holds. This allows us to focus on the part of that parameters that are not known perfectly. We show that this method provides the usual estimates and tests. Copyright Springer-Verlag 2013

Suggested Citation

  • Ronald Christensen & Yong Lin, 2013. "Linear models that allow perfect estimation," Statistical Papers, Springer, vol. 54(3), pages 695-708, August.
  • Handle: RePEc:spr:stpapr:v:54:y:2013:i:3:p:695-708
    DOI: 10.1007/s00362-012-0455-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00362-012-0455-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00362-012-0455-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan J. & Huang L-S., 2001. "Goodness-of-Fit Tests for Parametric Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 640-652, June.
    2. Jürgen Groß, 2004. "The general Gauss-Markov model with possibly singular dispersion matrix," Statistical Papers, Springer, vol. 45(3), pages 311-336, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dette, Holger & Marchlewski, Mareen, 2007. "A test for the parametric form of the variance function in apartial linear regression model," Technical Reports 2007,26, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    2. Yuqin Sun & Rong Ke & Yongge Tian, 2014. "Some overall properties of seemingly unrelated regression models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 103-120, April.
    3. Mason David M. & Eubank Randy, 2012. "Moderate deviations and intermediate efficiency for lack-of-fit tests," Statistics & Risk Modeling, De Gruyter, vol. 29(2), pages 175-187, June.
    4. Bodhisattva Sen & Mary Meyer, 2017. "Testing against a linear regression model using ideas from shape-restricted estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 423-448, March.
    5. Cui, Xia & Lu, Ying & Peng, Heng, 2017. "Estimation of partially linear regression models under the partial consistency property," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 103-121.
    6. Duran, Esra Akdeniz & Härdle, Wolfgang Karl & Osipenko, Maria, 2011. "Difference based ridge and Liu type estimators in semiparametric regression models," SFB 649 Discussion Papers 2011-014, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    7. Gao, Jiti & King, Maxwell, 2003. "Estimation and model specification testing in nonparametric and semiparametric econometric models," MPRA Paper 11989, University Library of Munich, Germany, revised Feb 2006.
    8. Teran Hidalgo, Sebastian J. & Wu, Michael C. & Engel, Stephanie M. & Kosorok, Michael R., 2018. "Goodness-of-fit test for nonparametric regression models: Smoothing spline ANOVA models as example," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 135-155.
    9. Guang Jing Song & Qing Wen Wang, 2014. "On the weighted least-squares, the ordinary least-squares and the best linear unbiased estimators under a restricted growth curve model," Statistical Papers, Springer, vol. 55(2), pages 375-392, May.
    10. Masamune Iwasawa, 2015. "A Joint Specification Test for Response Probabilities in Unordered Multinomial Choice Models," Econometrics, MDPI, vol. 3(3), pages 1-31, September.
    11. Xu Guo & Wangli Xu & Lixing Zhu, 2015. "Model checking for parametric regressions with response missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(2), pages 229-259, April.
    12. Pascal Lavergne & Valentin Patilea, 2011. "One for All and All for One: Regression Checks With Many Regressors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 41-52, January.
    13. Ngai Sze Han & Shiqing Ling, 2017. "Goodness-Of-Fit Test For Nonlinear Time Series Models," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 12(02), pages 1-21, June.
    14. Wang-Li Xu & Li-Xing Zhu, 2008. "Goodness-of-fit testing for varying-coefficient models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 68(2), pages 129-146, September.
    15. Escanciano, Juan Carlos & Mayoral, Silvia, 2010. "Data-driven smooth tests for the martingale difference hypothesis," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 1983-1998, August.
    16. Jun Bi & Yongxing Wang & Shuai Sun & Wei Guan, 2018. "Predicting Charging Time of Battery Electric Vehicles Based on Regression and Time-Series Methods: A Case Study of Beijing," Energies, MDPI, vol. 11(5), pages 1-18, April.
    17. S. Haslett & S. Puntanen & B. Arendacká, 2015. "The link between the mixed and fixed linear models revisited," Statistical Papers, Springer, vol. 56(3), pages 849-861, August.
    18. Radosław Kala & Simo Puntanen & Yongge Tian, 2017. "Some notes on linear sufficiency," Statistical Papers, Springer, vol. 58(1), pages 1-17, March.
    19. Qiang Xia & Kejun He & Cuizhen Niu, 2017. "A Model-Adaptive Test for Parametric Single-Index Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(6), pages 981-999, November.
    20. Hairu Wang & Zhiping Lu & Yukun Liu, 2023. "Score test for missing at random or not under logistic missingness models," Biometrics, The International Biometric Society, vol. 79(2), pages 1268-1279, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:54:y:2013:i:3:p:695-708. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.