IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v51y2010i2p465-475.html
   My bibliography  Save this article

Equality of BLUEs or BLUPs under two linear models using stochastic restrictions

Author

Listed:
  • Stephen Haslett
  • Simo Puntanen

Abstract

No abstract is available for this item.

Suggested Citation

  • Stephen Haslett & Simo Puntanen, 2010. "Equality of BLUEs or BLUPs under two linear models using stochastic restrictions," Statistical Papers, Springer, vol. 51(2), pages 465-475, June.
  • Handle: RePEc:spr:stpapr:v:51:y:2010:i:2:p:465-475
    DOI: 10.1007/s00362-009-0219-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00362-009-0219-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00362-009-0219-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongge Tian & Wenxing Guo, 2016. "On comparison of dispersion matrices of estimators under a constrained linear model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(4), pages 623-649, November.
    2. Stephen Haslett & Simo Puntanen, 2011. "On the equality of the BLUPs under two linear mixed models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 74(3), pages 381-395, November.
    3. Tian, Yongge & Zhang, Xuan, 2016. "On connections among OLSEs and BLUEs of whole and partial parameters under a general linear model," Statistics & Probability Letters, Elsevier, vol. 112(C), pages 105-112.
    4. B. Arendacká & S. Puntanen, 2015. "Further remarks on the connection between fixed linear model and mixed linear model," Statistical Papers, Springer, vol. 56(4), pages 1235-1247, November.
    5. S. Haslett & S. Puntanen & B. Arendacká, 2015. "The link between the mixed and fixed linear models revisited," Statistical Papers, Springer, vol. 56(3), pages 849-861, August.
    6. Liu, Xin & Wang, Qing-Wen, 2013. "Equality of the BLUPs under the mixed linear model when random components and errors are correlated," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 297-309.
    7. Ren, Xingwei, 2014. "On the equivalence of the BLUEs under a general linear model and its restricted and stochastically restricted models," Statistics & Probability Letters, Elsevier, vol. 90(C), pages 1-10.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:51:y:2010:i:2:p:465-475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.