IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v42y2001i4p423-436.html
   My bibliography  Save this article

Out-of-sample forecast errors in misspecific perturbed long memory processes

Author

Listed:
  • Miguel Arranz
  • Francesc Marmol

Abstract

The correlogram is not a useful diagnosis tool in the presence of long-memory or long range depedent time series. The aim of this paper is to illustrate this claim by examining the relative increase in mean square forecast error from fitting a weakly stationary process to the series of interest hen in fact the true model is a so-called perturbed long-memory process recently introduced by Granger and Marmol (1997). This model has the property of being unidentifiable from a white noise process on the basis of the correlogram and the usual rule-of thumbs in the Box-Jenkins methodology. We prove that this kind of misspecification can lead to serious errors in terms of forecasting.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Miguel Arranz & Francesc Marmol, 2001. "Out-of-sample forecast errors in misspecific perturbed long memory processes," Statistical Papers, Springer, vol. 42(4), pages 423-436, October.
  • Handle: RePEc:spr:stpapr:v:42:y:2001:i:4:p:423-436
    DOI: 10.1007/s003620100071
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s003620100071
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s003620100071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Granger, C.W.J. (Clive William John) & Marmol, Francesc, 1998. "The correlogram of a long memory process plus a simple noise," DES - Working Papers. Statistics and Econometrics. WS 9820, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Jeremy Smith & Nick Taylor & Sanjay Yadav, 1997. "Comparing the bias and misspecification in ARFIMA models," Journal of Time Series Analysis, Wiley Blackwell, vol. 18(5), pages 507-527, September.
    3. Smith, Jeremy & Yadav, Sanjay, 1994. "Forecasting costs incurred from unit differencing fractionally integrated processes," International Journal of Forecasting, Elsevier, vol. 10(4), pages 507-514, December.
    4. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
    5. Andersson, Michael K., 1998. "On the Effects of Imposing or Ignoring Long Memory when Forecasting," SSE/EFI Working Paper Series in Economics and Finance 225, Stockholm School of Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    2. Leonardo Rocha Souza, 2007. "Temporal Aggregation and Bandwidth selection in estimating long memory," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(5), pages 701-722, September.
    3. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "The Distribution of Exchange Rate Volatility," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-059, New York University, Leonard N. Stern School of Business-.
    4. Ana Pérez & Esther Ruiz, 2002. "Modelos de memoria larga para series económicas y financieras," Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
    5. Sun, Yixiao & Phillips, Peter C. B., 2003. "Nonlinear log-periodogram regression for perturbed fractional processes," Journal of Econometrics, Elsevier, vol. 115(2), pages 355-389, August.
    6. Ellis, Craig & Wilson, Patrick, 2004. "Another look at the forecast performance of ARFIMA models," International Review of Financial Analysis, Elsevier, vol. 13(1), pages 63-81.
    7. Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.
    8. Asai, Manabu & McAleer, Michael, 2015. "Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance," Journal of Econometrics, Elsevier, vol. 189(2), pages 251-262.
    9. Christensen, Bent Jesper & Nielsen, Morten Ørregaard & Zhu, Jie, 2010. "Long memory in stock market volatility and the volatility-in-mean effect: The FIEGARCH-M Model," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 460-470, June.
    10. He, Changli & Teräsvirta, Timo, 1999. "Higher-order dependence in the general Power ARCH process and a special case," SSE/EFI Working Paper Series in Economics and Finance 315, Stockholm School of Economics.
    11. Sheri M. Markose, 2005. "Computability and Evolutionary Complexity: Markets as Complex Adaptive Systems (CAS)," Economic Journal, Royal Economic Society, vol. 115(504), pages 159-192, 06.
    12. Maria Kalli & Jim Griffin, 2015. "Flexible Modeling of Dependence in Volatility Processes," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 102-113, January.
    13. David E. Allen & Michael McAleer & Marcel Scharth, 2009. "Realized Volatility Risk," CARF F-Series CARF-F-197, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Jan 2010.
    14. Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2017. "Realized stochastic volatility with general asymmetry and long memory," Journal of Econometrics, Elsevier, vol. 199(2), pages 202-212.
    15. Arteche, J., 2006. "Semiparametric estimation in perturbed long memory series," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2118-2141, December.
    16. Aliou Diop & Dominique Guegan, 2003. "Extreme Distribution of a Generalized Stochastic Volatility Model," Post-Print halshs-00188535, HAL.
    17. Thomakos, Dimitrios D. & Wang, Tao, 2003. "Realized volatility in the futures markets," Journal of Empirical Finance, Elsevier, vol. 10(3), pages 321-353, May.
    18. Charfeddine, Lanouar & Ajmi, Ahdi Noomen, 2013. "The Tunisian stock market index volatility: Long memory vs. switching regime," Emerging Markets Review, Elsevier, vol. 16(C), pages 170-182.
    19. Manabu Asai & Michael McAleer, 2017. "A fractionally integrated Wishart stochastic volatility model," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 42-59, March.
    20. Kei Nanamiya, 2011. "The Wavelet-based Estimation for Long Memory Signal Plus Noise Models," Global COE Hi-Stat Discussion Paper Series gd11-210, Institute of Economic Research, Hitotsubashi University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:42:y:2001:i:4:p:423-436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.