IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v32y2023i1d10.1007_s10260-022-00648-z.html
   My bibliography  Save this article

Influence measures in nonparametric regression model with symmetric random errors

Author

Listed:
  • Germán Ibacache-Pulgar

    (Faculty of Sciences, Institute of Statistics, University of Valparaíso
    Interdisciplinary Center for Atmospheric and Astro-Statistical Studies, Universidad de Valparaíso)

  • Cristian Villegas

    (Department of Exact Sciences, University of São Paulo)

  • Javier Linkolk López-Gonzales

    (Facultad de Ingeniería y Arquitectura, Universidad Peruana Unión)

  • Magaly Moraga

    (Instituto de Estadística, Universidad Austral de Chile)

Abstract

In this paper we present several diagnostic measures for the class of nonparametric regression models with symmetric random errors, which includes all continuous and symmetric distributions. In particular, we derive some diagnostic measures of global influence such as residuals, leverage values, Cook’s distance and the influence measure proposed by Peña (Technometrics 47(1):1–12, 2005) to measure the influence of an observation when it is influenced by the rest of the observations. A simulation study to evaluate the effectiveness of the diagnostic measures is presented. In addition, we develop the local influence measure to assess the sensitivity of the maximum penalized likelihood estimator of smooth function. Finally, an example with real data is given for illustration.

Suggested Citation

  • Germán Ibacache-Pulgar & Cristian Villegas & Javier Linkolk López-Gonzales & Magaly Moraga, 2023. "Influence measures in nonparametric regression model with symmetric random errors," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(1), pages 1-25, March.
  • Handle: RePEc:spr:stmapp:v:32:y:2023:i:1:d:10.1007_s10260-022-00648-z
    DOI: 10.1007/s10260-022-00648-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-022-00648-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-022-00648-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simon N. Wood, 2003. "Thin plate regression splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 95-114, February.
    2. Zhong‐Yi Zhu & Xuming He & Wing‐Kam Fung, 2003. "Local Influence Analysis for Penalized Gaussian Likelihood Estimators in Partially Linear Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(4), pages 767-780, December.
    3. Hadi Emami, 2018. "Local influence for Liu estimators in semiparametric linear models," Statistical Papers, Springer, vol. 59(2), pages 529-544, June.
    4. Eubank, R. L., 1984. "The hat matrix for smoothing splines," Statistics & Probability Letters, Elsevier, vol. 2(1), pages 9-14, January.
    5. Ibacache-Pulgar, Germán & Paula, Gilberto A., 2011. "Local influence for Student-t partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1462-1478, March.
    6. Clécio S. Ferreira & Gilberto A. Paula, 2017. "Estimation and diagnostic for skew-normal partially linear models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(16), pages 3033-3053, December.
    7. Wing‐Kam Fung & Zhong‐Yi Zhu & Bo‐Cheng Wei & Xuming He, 2002. "Influence diagnostics and outlier tests for semiparametric mixed models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 565-579, August.
    8. Kim, Choongrak & Park, Byeong U. & Kim, Woochul, 2002. "Influence diagnostics in semiparametric regression models," Statistics & Probability Letters, Elsevier, vol. 60(1), pages 49-58, November.
    9. Wei, Wen Hsiang, 2004. "Derivatives diagnostics and robustness for smoothing splines," Computational Statistics & Data Analysis, Elsevier, vol. 46(2), pages 335-356, June.
    10. Germán Ibacache-Pulgar & Gilberto Paula & Francisco Cysneiros, 2013. "Semiparametric additive models under symmetric distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 103-121, March.
    11. Eubank, R. L. & Gunst, R. F., 1986. "Diagnostics for penalized least-squares estimators," Statistics & Probability Letters, Elsevier, vol. 4(5), pages 265-272, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ibacache-Pulgar, Germán & Paula, Gilberto A., 2011. "Local influence for Student-t partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1462-1478, March.
    2. Hadi Emami, 2018. "Local influence for Liu estimators in semiparametric linear models," Statistical Papers, Springer, vol. 59(2), pages 529-544, June.
    3. Wei, Wen Hsiang, 2004. "Derivatives diagnostics and robustness for smoothing splines," Computational Statistics & Data Analysis, Elsevier, vol. 46(2), pages 335-356, June.
    4. Manghi, Roberto F. & Cysneiros, Francisco José A. & Paula, Gilberto A., 2019. "Generalized additive partial linear models for analyzing correlated data," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 47-60.
    5. Germán Ibacache-Pulgar & Gilberto Paula & Francisco Cysneiros, 2013. "Semiparametric additive models under symmetric distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 103-121, March.
    6. Clécio S. Ferreira & Gilberto A. Paula, 2017. "Estimation and diagnostic for skew-normal partially linear models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(16), pages 3033-3053, December.
    7. Emami, Hadi, 2015. "Influence diagnostic in ridge semiparametric models," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 106-113.
    8. Li, Zaixing & Xu, Wangli & Zhu, Lixing, 2009. "Influence diagnostics and outlier tests for varying coefficient mixed models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2002-2017, October.
    9. Nicole Jeldes & Germán Ibacache-Pulgar & Carolina Marchant & Javier Linkolk López-Gonzales, 2022. "Modeling Air Pollution Using Partially Varying Coefficient Models with Heavy Tails," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
    10. Carlos Eduardo M. Relvas & Gilberto A. Paula, 2016. "Partially linear models with first-order autoregressive symmetric errors," Statistical Papers, Springer, vol. 57(3), pages 795-825, September.
    11. Alejandra Tapia & Victor Leiva & Maria del Pilar Diaz & Viviana Giampaoli, 2019. "Influence diagnostics in mixed effects logistic regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 920-942, September.
    12. M.L. Nores & M.P. Díaz, 2016. "Bootstrap hypothesis testing in generalized additive models for comparing curves of treatments in longitudinal studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(5), pages 810-826, April.
    13. Xueying Zheng & Wing Fung & Zhongyi Zhu, 2013. "Robust estimation in joint mean–covariance regression model for longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(4), pages 617-638, August.
    14. Georgios Gioldasis & Antonio Musolesi & Michel Simioni, 2020. "Model uncertainty, nonlinearities and out-of-sample comparison: evidence from international technology diffusion," Working Papers hal-02790523, HAL.
    15. Fang, Lei & Härdle, Wolfgang Karl, 2015. "Stochastic population analysis: A functional data approach," SFB 649 Discussion Papers 2015-007, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    16. Iñaki Galán & Lorena Simón & Elena Boldo & Cristina Ortiz & Rafael Fernández-Cuenca & Cristina Linares & María José Medrano & Roberto Pastor-Barriuso, 2017. "Changes in hospitalizations for chronic respiratory diseases after two successive smoking bans in Spain," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-14, May.
    17. Longhi, Christian & Musolesi, Antonio & Baumont, Catherine, 2014. "Modeling structural change in the European metropolitan areas during the process of economic integration," Economic Modelling, Elsevier, vol. 37(C), pages 395-407.
    18. Strasak, Alexander M. & Umlauf, Nikolaus & Pfeiffer, Ruth M. & Lang, Stefan, 2011. "Comparing penalized splines and fractional polynomials for flexible modelling of the effects of continuous predictor variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1540-1551, April.
    19. Roberto Basile & Luigi Benfratello & Davide Castellani, 2012. "Geoadditive models for regional count data: an application to industrial location," ERSA conference papers ersa12p83, European Regional Science Association.
    20. Paolo Veneri, 2018. "Urban spatial structure in OECD cities: Is urban population decentralising or clustering?," Papers in Regional Science, Wiley Blackwell, vol. 97(4), pages 1355-1374, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:32:y:2023:i:1:d:10.1007_s10260-022-00648-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.