IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v30y2021i1d10.1007_s10260-020-00518-6.html
   My bibliography  Save this article

Regression models for exceedance data: a new approach

Author

Listed:
  • Marcelo Bourguignon

    (Universidade Federal do Rio Grande do Norte)

  • Fernando Ferraz Nascimento

    (Universidade Federal do Piauí)

Abstract

The generalized Pareto distribution (GPD) is a family of continuous distributions used to model the tail of the distribution to values higher than a threshold u. Despite the advantages of the GPD representation, its shape and scale parameters do not correspond to the expected value, which complicates the interpretation of regression models specified using the GPD. This study proposes a linear regression model in which the response variable is a GPD, using a new parametrization that is indexed by mean and precision parameters. The main advantage of our new parametrization is the straightforward interpretation of the regression coefficients in terms of the expectation of the positive real line response variable, as is usual in the context of generalized linear models. Furthermore, we propose a model for extreme values, in which the GPD parameters (mean and precision) are defined on the basis of a dynamic linear regression model. The novelty of the study lies in the time variation of the mean and precision parameter of the resulting distribution. The parameter estimation of these new models is performed under the Bayesian paradigm. Simulations are conducted to analyze the performance of our proposed models. Finally, the models are applied to environmental datasets (temperature datasets), illustrating their capabilities in challenging cases in extreme value theory.

Suggested Citation

  • Marcelo Bourguignon & Fernando Ferraz Nascimento, 2021. "Regression models for exceedance data: a new approach," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 157-173, March.
  • Handle: RePEc:spr:stmapp:v:30:y:2021:i:1:d:10.1007_s10260-020-00518-6
    DOI: 10.1007/s10260-020-00518-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-020-00518-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-020-00518-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernando Nascimento & Dani Gamerman & Hedibert Lopes, 2016. "Time-varying extreme pattern with dynamic models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 131-149, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcelo Bourguignon & Diego I. Gallardo & Héctor J. Gómez, 2022. "A Note on Pareto-Type Distributions Parameterized by Its Mean and Precision Parameters," Mathematics, MDPI, vol. 10(3), pages 1-8, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiara Lattanzi & Manuele Leonelli, 2019. "A changepoint approach for the identification of financial extreme regimes," Papers 1902.09205, arXiv.org.
    2. Jue Tao Lim & Yiting Han & Borame Sue Lee Dickens & Lee Ching Ng & Alex R Cook, 2020. "Time varying methods to infer extremes in dengue transmission dynamics," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:30:y:2021:i:1:d:10.1007_s10260-020-00518-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.