IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v13y2004i2d10.1007_s10260-004-0095-1.html
   My bibliography  Save this article

Robust multivariate transformations to normality: Constructed variables and likelihood ratio tests

Author

Listed:
  • Marco Riani

    (Universitá di Parma)

Abstract

. The assumption of multivariate normality provides the customary powerful and convenient ways of analysing multivariate data: if the data are not normal, the analysis may often be simplified by an appropriate transformation. In this context, the most widely used test is the likelihood ratio, which requires the maximum likelihood estimate of the transformation parameter for each variable. Given that this estimate can only be found numerically, when the number of variables is large (> 20) it is impossible or infeasible to compute the test. In this paper we introduce alternative tests which do not require the maximum likelihood estimate of the transformation parameters and prove algebraically their relationships. We also give insights both using theoretical arguments and a robust simulation study, based on the forward search algorithm, about the distribution of the tests previously introduced.

Suggested Citation

  • Marco Riani, 2004. "Robust multivariate transformations to normality: Constructed variables and likelihood ratio tests," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 13(2), pages 179-196, September.
  • Handle: RePEc:spr:stmapp:v:13:y:2004:i:2:d:10.1007_s10260-004-0095-1
    DOI: 10.1007/s10260-004-0095-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-004-0095-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-004-0095-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shun Matsuura & Hiroshi Kurata, 2020. "Covariance matrix estimation in a seemingly unrelated regression model under Stein’s loss," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(1), pages 79-99, March.
    2. Tingguo Zheng & Tao Song, 2014. "A Realized Stochastic Volatility Model With Box-Cox Transformation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 593-605, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:13:y:2004:i:2:d:10.1007_s10260-004-0095-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.