IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v11y2002i3d10.1007_bf02509833.html
   My bibliography  Save this article

Graphics for studying logistic regression models

Author

Listed:
  • Luca Scrucca

    (Università degli Studi di Perugia)

Abstract

In this article we focus on logistic regression models for binary responses. An existing result shows that the log-odds can be modelled depending on the log of the ratio between the conditional densities of the predictors given the response variable. This suggests that relevant statistical information could be extracted investigating the inverse problem. Thus, we present different methods for studying the log-density ratio through graphs, which allow us to select which predictors are needed, and how they should be included in a logistic regression model. We also discuss data analysis examples based on real datasets available in literature in order to provide further insights into the methodology proposed.

Suggested Citation

  • Luca Scrucca, 2002. "Graphics for studying logistic regression models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 11(3), pages 371-394, October.
  • Handle: RePEc:spr:stmapp:v:11:y:2002:i:3:d:10.1007_bf02509833
    DOI: 10.1007/BF02509833
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/BF02509833
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/BF02509833?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:11:y:2002:i:3:d:10.1007_bf02509833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.