IDEAS home Printed from https://ideas.repec.org/a/spr/stabio/v17y2025i1d10.1007_s12561-023-09412-7.html
   My bibliography  Save this article

Functional Linear Partial Quantile Regression with Guaranteed Convergence for Neuroimaging Data Analysis

Author

Listed:
  • Dengdeng Yu

    (University of Texas at Arlington)

  • Matthew Pietrosanu

    (University of Alberta)

  • Ivan Mizera

    (University of Alberta)

  • Bei Jiang

    (University of Alberta)

  • Linglong Kong

    (University of Alberta)

  • Wei Tu

    (Queen’s University)

Abstract

Functional data such as curves and surfaces have become more and more common with modern technological advancements. The use of functional predictors remains challenging due to its inherent infinite dimensionality. The common practice is to project functional data into a finite dimensional space. The popular partial least square method has been well studied for the functional linear model (Delaigle and Hall in Ann Stat 40(1):322–352, 2012). As an alternative, quantile regression provides a robust and more comprehensive picture of the conditional distribution of a response when it is non-normal, heavy-tailed, or contaminated by outliers. While partial quantile regression (PQR) was proposed in (Yu et al. in Neurocomputing 195:74–87, 2016)[2], no theoretical guarantees were provided due to the iterative nature of the algorithm and the non-smoothness of quantile loss function. To address these issues, we propose an alternative PQR formulation with guaranteed convergence. This novel formulation motivates new theories and allows us to establish asymptotic properties. Numerical studies on a benchmark dataset show the superiority of our new approach. We also apply our novel method to a functional magnetic resonance imaging data to predict attention deficit hyperactivity disorder and a diffusion tensor imaging dataset to predict Alzheimer’s disease.

Suggested Citation

  • Dengdeng Yu & Matthew Pietrosanu & Ivan Mizera & Bei Jiang & Linglong Kong & Wei Tu, 2025. "Functional Linear Partial Quantile Regression with Guaranteed Convergence for Neuroimaging Data Analysis," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 17(1), pages 174-190, April.
  • Handle: RePEc:spr:stabio:v:17:y:2025:i:1:d:10.1007_s12561-023-09412-7
    DOI: 10.1007/s12561-023-09412-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12561-023-09412-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12561-023-09412-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v:17:y:2025:i:1:d:10.1007_s12561-023-09412-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.