IDEAS home Printed from https://ideas.repec.org/a/spr/stabio/v15y2023i3d10.1007_s12561-021-09308-4.html
   My bibliography  Save this article

Bayesian Joint Modeling of Single-Cell Expression Data and Bulk Spatial Transcriptomic Data

Author

Listed:
  • Jinge Yu

    (Renmin University of China)

  • Qiuyu Wu

    (Renmin University of China)

  • Xiangyu Luo

    (Renmin University of China)

Abstract

Single-cell RNA-sequencing (scRNA-seq) enables gene expression profiling at single-cell resolution, but it loses the spatial information of cells for solid tissues during the tissue dissociation step before sequencing. In contrast, bulk spatial transcriptomics (ST) methods can measure the expression of spatially organized spots in solid tissues, but as a spot comprises dozens of cells, ST expression levels are averaged signals and lack cellular resolution. Joint analysis of these two complementary data types provides the opportunity to recover the spatial patterns of cell types and obtain the cellular enrichment of spots. However, there is a lack of unified statistical methods to achieve this goal. This study develops a Bayesian statistical method named BEATS to jointly model scRNA-seq data and bulk ST data from a common sample in the presence of cellular and spatial heterogeneity. BEATS can simultaneously (a) discover cell types, where cells in a cell type share mean expression profiles; (b) identify spot regions, where a region is a set of spots with the same cellular compositions; and (c) estimate cell-type proportions for each spot region. The Bayesian posterior inference is performed through a hybrid Markov chain Monte Carlo sampling algorithm. Extensive simulation studies and application to datasets on pancreatic ductal adenocarcinoma tissues demonstrate the practical utility of BEATS.

Suggested Citation

  • Jinge Yu & Qiuyu Wu & Xiangyu Luo, 2023. "Bayesian Joint Modeling of Single-Cell Expression Data and Bulk Spatial Transcriptomic Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(3), pages 719-733, December.
  • Handle: RePEc:spr:stabio:v:15:y:2023:i:3:d:10.1007_s12561-021-09308-4
    DOI: 10.1007/s12561-021-09308-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12561-021-09308-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12561-021-09308-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v:15:y:2023:i:3:d:10.1007_s12561-021-09308-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.