IDEAS home Printed from https://ideas.repec.org/a/spr/stabio/v10y2018i2d10.1007_s12561-016-9174-8.html
   My bibliography  Save this article

A New Overall-Subgroup Simultaneous Test for Optimal Inference in Biomarker-Targeted Confirmatory Trials

Author

Listed:
  • Ilana Belitskaya-Lévy

    (Cooperative Studies Program Palo Alto Coordinating Center)

  • Hui Wang

    (Cooperative Studies Program Palo Alto Coordinating Center)

  • Mei-Chiung Shih

    (Cooperative Studies Program Palo Alto Coordinating Center)

  • Lu Tian

    (Stanford University)

  • Gheorghe Doros

    (Boston University School of Public Health)

  • Robert A. Lew

    (Boston University School of Public Health
    Cooperative Studies Program Boston Coordinating Center)

  • Ying Lu

    (Cooperative Studies Program Palo Alto Coordinating Center
    Stanford University)

Abstract

We propose a joint hypothesis test for simultaneous confirmatory inference in the overall population and a pre-defined marker-positive subgroup under the assumption that the treatment effect in the marker-positive subgroup is larger than that in the overall population. The proposed confirmatory overall-subgroup simultaneous test (COSST) is based on partitioning the sample space of the test statistics in the marker-positive and marker-negative subgroups. We define two rejection regions in the joint sample space of the two test statistics: (1) efficacy in the marker-positive subgroup only; (2) efficacy in the overall population. COSST achieves higher statistical power to detect the overall and subgroup efficacy than most sequential procedures while controlling the family-wise type I error rate. COSST also takes into account the potentially harmful effect in the subgroups in the decision. The optimal rejection regions depend on the specific alternative hypothesis and the sample size. COSST can be useful for Phase III clinical trials with tailoring objectives.

Suggested Citation

  • Ilana Belitskaya-Lévy & Hui Wang & Mei-Chiung Shih & Lu Tian & Gheorghe Doros & Robert A. Lew & Ying Lu, 2018. "A New Overall-Subgroup Simultaneous Test for Optimal Inference in Biomarker-Targeted Confirmatory Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(2), pages 297-323, August.
  • Handle: RePEc:spr:stabio:v:10:y:2018:i:2:d:10.1007_s12561-016-9174-8
    DOI: 10.1007/s12561-016-9174-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12561-016-9174-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12561-016-9174-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael Rosenblum & Han Liu & En-Hsu Yen, 2014. "Optimal Tests of Treatment Effects for the Overall Population and Two Subpopulations in Randomized Trials, Using Sparse Linear Programming," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1216-1228, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yoav Benjamini & Ruth Heller & Abba Krieger & Saharon Rosset, 2023. "Discussion on “Optimal test procedures for multiple hypotheses controlling the familywise expected loss” by Willi Maurer, Frank Bretz, and Xiaolei Xun," Biometrics, The International Biometric Society, vol. 79(4), pages 2794-2797, December.
    2. Michael Rosenblum & Ethan X. Fang & Han Liu, 2020. "Optimal, two‐stage, adaptive enrichment designs for randomized trials, using sparse linear programming," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 749-772, July.
    3. Saharon Rosset & Ruth Heller & Amichai Painsky & Ehud Aharoni, 2022. "Optimal and maximin procedures for multiple testing problems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1105-1128, September.
    4. Ruth Heller & Abba Krieger & Saharon Rosset, 2023. "Optimal multiple testing and design in clinical trials," Biometrics, The International Biometric Society, vol. 79(3), pages 1908-1919, September.
    5. Willi Maurer & Frank Bretz & Xiaolei Xun, 2023. "Optimal test procedures for multiple hypotheses controlling the familywise expected loss," Biometrics, The International Biometric Society, vol. 79(4), pages 2781-2793, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v:10:y:2018:i:2:d:10.1007_s12561-016-9174-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.