IDEAS home Printed from https://ideas.repec.org/a/spr/stabio/v10y2018i1d10.1007_s12561-017-9211-2.html
   My bibliography  Save this article

Residual Bootstrap Test for Interactions in Biomarker Threshold Models with Survival Data

Author

Listed:
  • Parisa Gavanji

    (Queen’s University)

  • Bingshu E. Chen

    (Queen’s University)

  • Wenyu Jiang

    (Queen’s University)

Abstract

Many new treatments in cancer clinical trials tend to benefit a subset of patients more. To avoid unnecessary therapies and failure to recognize beneficial treatments, biomarker threshold models are often used to identify this subset of patients. We are interested in testing the treatment–biomarker interaction effects in a threshold model with biomarker but an unknown cut point. The unknown cut point causes irregularity in the model, and the traditional likelihood ratio test cannot be applied directly. A test for biomarker–treatment interaction effects is developed using a residual bootstrap method to approximate the distribution of the proposed test statistic. We evaluate the residual bootstrap and the permutation methods through extensive simulation study and find that the residual bootstrap method gives accurate test size, while the permutation method cannot control type I error sometimes in the presence of main treatment effects. The proposed residual bootstrap test can be used to explore potential treatment-by-biomarker interaction in clinical studies. The findings can be applied to guide the follow-up trial design using biomarker as a stratification factor. We apply the proposed residual bootstrap method to data from Breast International Group (BIG) 1-98 randomized clinical trial and show that patients with high Ki-67 level may benefit more from Letrozole treatment.

Suggested Citation

  • Parisa Gavanji & Bingshu E. Chen & Wenyu Jiang, 2018. "Residual Bootstrap Test for Interactions in Biomarker Threshold Models with Survival Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(1), pages 202-216, April.
  • Handle: RePEc:spr:stabio:v:10:y:2018:i:1:d:10.1007_s12561-017-9211-2
    DOI: 10.1007/s12561-017-9211-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12561-017-9211-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12561-017-9211-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Bingshu E. & Jiang, Wenyu & Tu, Dongsheng, 2014. "A hierarchical Bayes model for biomarker subset effects in clinical trials," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 324-334.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui Zhang & Guoyou Qin & Dongsheng Tu, 2023. "A robust threshold t linear mixed model for subgroup identification using multivariate T distributions," Computational Statistics, Springer, vol. 38(1), pages 299-326, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Zhang & Guoyou Qin & Dongsheng Tu, 2023. "A robust threshold t linear mixed model for subgroup identification using multivariate T distributions," Computational Statistics, Springer, vol. 38(1), pages 299-326, March.
    2. Fang, Tian & Mackillop, William & Jiang, Wenyu & Hildesheim, Allan & Wacholder, Sholom & Chen, Bingshu E., 2017. "A Bayesian method for risk window estimation with application to HPV vaccine trial," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 53-62.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v:10:y:2018:i:1:d:10.1007_s12561-017-9211-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.