A Neuro-Fuzzy Risk Prediction Methodology in the Automotive Part Industry
Author
Abstract
Suggested Citation
DOI: 10.1007/s43069-024-00380-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Alireza Namdari & Tariq S. Durrani, 2021. "A Multilayer Feedforward Perceptron Model in Neural Networks for Predicting Stock Market Short-term Trends," SN Operations Research Forum, Springer, vol. 2(3), pages 1-30, September.
- Manikandan Rajagopal & Ramkumar Sivasakthivel, 2024. "An Empirical Framework Using Weighted Feed Forward Neural Network for Supply Chain Resilience (SCR) Strategy Selection," SN Operations Research Forum, Springer, vol. 5(2), pages 1-19, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Albert Wong & Steven Whang & Emilio Sagre & Niha Sachin & Gustavo Dutra & Yew-Wei Lim & Gaetan Hains & Youry Khmelevsky & Frank Zhang, 2023. "Short-Term Stock Price Forecasting using exogenous variables and Machine Learning Algorithms," Papers 2309.00618, arXiv.org.
- Paraskevi Nousi & Loukia Avramelou & Georgios Rodinos & Maria Tzelepi & Theodoros Manousis & Konstantinos Tsampazis & Kyriakos Stefanidis & Dimitris Spanos & Manos Kirtas & Pavlos Tosidis & Avraam Tsa, 2023. "Leveraging Deep Learning and Online Source Sentiment for Financial Portfolio Management," Papers 2309.16679, arXiv.org, revised Oct 2023.
- Andrew Papanicolaou & Hao Fu & Prashanth Krishnamurthy & Farshad Khorrami, 2023. "A Deep Neural Network Algorithm for Linear-Quadratic Portfolio Optimization with MGARCH and Small Transaction Costs," Papers 2301.10869, arXiv.org, revised Feb 2023.
More about this item
Keywords
Risk assessment; FMEA; Fuzzy logic; RPN; Adaptive neuro-fuzzy inference system;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:5:y:2024:i:4:d:10.1007_s43069-024-00380-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.