IDEAS home Printed from https://ideas.repec.org/a/spr/snopef/v5y2024i2d10.1007_s43069-024-00319-7.html
   My bibliography  Save this article

Multi-objective Service Composition Optimization in Smart Agriculture Using Fuzzy-Evolutionary Algorithm

Author

Listed:
  • Shalini Sharma

    (Jaypee University of Information Technology)

  • Bhupendra Kumar Pathak

    (Jaypee University of Information Technology)

  • Rajiv Kumar

    (Jaypee University of Information Technology)

Abstract

Agricultural applications can take advantage of improved services provided by the Internet of Things paradigms to manage data effectively. It is necessary to manage Quality of Service (QoS) characteristics to effectively monitor and measure the given services. Given how challenging it is to satisfy a user’s complicated requirements with a single service, this paper presents a QoS-aware method for sending agricultural information as a service and then combining those services, thus, known as service composition. The proposed work is divided into two phases. In the first phase, a fuzzy inference set is used to initialize the population whereas, in the second phase, the multi-objective evolutionary algorithm NSGA-II (Non-dominated sorting genetic algorithm) has been used to optimize the cost and time of services involved in apple crop production. Since evolutionary algorithms have a problem dealing with uncertainties so modification using fuzzy logic has been proposed to check its effectiveness in Service Composition Problem (SCP). In order to demonstrate the persuasiveness of our work, the proposed method is compared with the multi-objective genetic algorithm (MOGA), Gaining sharing knowledge (GSK) algorithm, and NSGA-II and it has been found that NSGA-II is giving more diversified and near to true Pareto solutions.

Suggested Citation

  • Shalini Sharma & Bhupendra Kumar Pathak & Rajiv Kumar, 2024. "Multi-objective Service Composition Optimization in Smart Agriculture Using Fuzzy-Evolutionary Algorithm," SN Operations Research Forum, Springer, vol. 5(2), pages 1-24, June.
  • Handle: RePEc:spr:snopef:v:5:y:2024:i:2:d:10.1007_s43069-024-00319-7
    DOI: 10.1007/s43069-024-00319-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43069-024-00319-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43069-024-00319-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Caiado, Rodrigo Goyannes Gusmão & Scavarda, Luiz Felipe & Gavião, Luiz Octávio & Ivson, Paulo & Nascimento, Daniel Luiz de Mattos & Garza-Reyes, Jose Arturo, 2021. "A fuzzy rule-based industry 4.0 maturity model for operations and supply chain management," International Journal of Production Economics, Elsevier, vol. 231(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bueno, Adauto & Goyannes Gusmão Caiado, Rodrigo & Guedes de Oliveira, Thaís Lopes & Scavarda, Luiz Felipe & Filho, Moacir Godinho & Tortorella, Guilherme Luz, 2023. "Lean 4.0 implementation framework: Proposition using a multi-method research approach," International Journal of Production Economics, Elsevier, vol. 264(C).
    2. Mastrocinque, Ernesto & Ramírez, F. Javier & Honrubia-Escribano, Andrés & Pham, Duc T., 2022. "Industry 4.0 enabling sustainable supply chain development in the renewable energy sector: A multi-criteria intelligent approach," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    3. Pinto, Marcelo Rezende & Salume, Paula Karina & Barbosa, Marcelo Werneck & de Sousa, Paulo Renato, 2023. "The path to digital maturity: A cluster analysis of the retail industry in an emerging economy," Technology in Society, Elsevier, vol. 72(C).
    4. Fleury, Afonso & Fleury, Maria Tereza Leme & Oliveira, Luis & Leao, Pablo, 2024. "Going digital EMNEs: The role of digital maturity capability," International Business Review, Elsevier, vol. 33(4).
    5. Bai, Chunguang & Sarkis, Joseph, 2022. "A critical review of formal analytical modeling for blockchain technology in production, operations, and supply chains: Harnessing progress for future potential," International Journal of Production Economics, Elsevier, vol. 250(C).
    6. Monshizadeh, Fatemeh & Sadeghi Moghadam, Mohammad Reza & Mansouri, Taha & Kumar, Maneesh, 2023. "Developing an industry 4.0 readiness model using fuzzy cognitive maps approach," International Journal of Production Economics, Elsevier, vol. 255(C).
    7. Tiwari, Sunil & Sharma, Pankaj & Jha, Ashish Kumar, 2024. "Digitalization & Covid-19: An institutional-contingency theoretic analysis of supply chain digitalization," International Journal of Production Economics, Elsevier, vol. 267(C).
    8. Petar Radanliev, 2023. "The Rise and Fall of Cryptocurrencies: Defining the Economic and Social Values of Blockchain Technologies, assessing the Opportunities, and defining the Financial and Cybersecurity Risks of the Metave," Papers 2309.12322, arXiv.org.
    9. Gillani, Fatima & Chatha, Kamran Ali & Jajja, Shakeel Sadiq & Cao, Dongmei & Ma, Xiao, 2024. "Unpacking Digital Transformation: Identifying key enablers, transition stages and digital archetypes," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    10. R. K. A. Bhalaji & S. Bathrinath & Syed Mithun Ali & K. Koppiahraj, 2024. "Risk assessment in sustainable supply chain: theoretical and managerial implications for circular economy in emerging economies," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(10), pages 4966-4981, October.
    11. Behl, Abhishek & Singh, Ramandeep & Pereira, Vijay & Laker, Benjamin, 2023. "Analysis of Industry 4.0 and circular economy enablers: A step towards resilient sustainable operations management," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    12. Bodendorf, Frank & Sauter, Maximilian & Franke, Jörg, 2023. "A mixed methods approach to analyze and predict supply disruptions by combining causal inference and deep learning," International Journal of Production Economics, Elsevier, vol. 256(C).
    13. Xiaozhu Yang, 2022. "Application of cloud computing technology in optimal design of decision support system under mass communication theory," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 1177-1185, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:5:y:2024:i:2:d:10.1007_s43069-024-00319-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.