Author
Abstract
Combinatorial applications such as configuration, transportation and resource allocation often operate under highly dynamic and unpredictable environments. In this regard, one of the main challenges is to maintain a consistent solution anytime constraints are (dynamically) added. While many solvers have been developed to tackle these applications, they often work under idealized assumptions of environmental stability. In order to address limitation, we propose a methodology, relying on nature-inspired techniques, for solving constraint problems when constraints are added dynamically. The choice for nature-inspired techniques is motivated by the fact that these are iterative algorithms, capable of maintaining a set of promising solutions, at each iteration. Our methodology takes advantage of these two properties, as follows. We first solve the initial constraint problem and save the final state (and the related population) after obtaining a consistent solution. This saved context will then be used as a resume point for finding, in an incremental manner, new solutions to subsequent variants of the problem, anytime new constraints are added. More precisely, once a solution is found, we resume from the current state to search for a new one (if the old solution is no longer feasible), when new constraints are added. This can be seen as an optimization problem where we look for a new feasible solution satisfying old and new constraints, while minimizing the differences with the solution of the previous problem, in sequence. This latter objective ensures to find the least disruptive solution, as this is very important in many applications including scheduling, planning and timetabling. Following on our proposed methodology, we have developed the dynamic variant of several nature-inspired techniques to tackle dynamic constraint problems. Constraint problems are represented using the well-known constraint satisfaction problem (CSP) paradigm. Dealing with constraint additions in a dynamic environment can then be expressed as a series of static CSPs, each resulting from a change in the previous one by adding new constraints. This sequence of CSPs is called the dynamic CSP (DCSP). To assess the performance of our proposed methodology, we conducted several experiments on randomly generated DCSP instances, following the RB model. The results of the experiments are reported and discussed.
Suggested Citation
Mahdi Bidar & Malek Mouhoub, 2022.
"Nature-Inspired Techniques for Dynamic Constraint Satisfaction Problems,"
SN Operations Research Forum, Springer, vol. 3(2), pages 1-33, June.
Handle:
RePEc:spr:snopef:v:3:y:2022:i:2:d:10.1007_s43069-021-00116-6
DOI: 10.1007/s43069-021-00116-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:3:y:2022:i:2:d:10.1007_s43069-021-00116-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.