IDEAS home Printed from https://ideas.repec.org/a/spr/snbeco/v1y2021i1d10.1007_s43546-020-00020-x.html
   My bibliography  Save this article

Forecasting the red lentils commodity market price using SARIMA models

Author

Listed:
  • Roshani W. Divisekara

    (University of Peradeniya)

  • G. J. M. S. R. Jayasinghe

    (Uva Wellassa University)

  • K. W. S. N. Kumari

    (Uva Wellassa University)

Abstract

Canada is the world’s largest producer of lentils, accounting for 32.8% of total production in the world. However, the production of lentils are prone to fluctuate due to the impact of erratic factors such as weather conditions and economic crises. Consequently, the price of the commodity will be changed and volatile. Therefore, the approach of modeling and forecasting future price based on the preceding data will provide representative figures to make decisions regarding the lentil production for growers and end users. Hence, the objective of this study is to model and forecast the red lentil prices using the Seasonal Autoregressive Integrated Moving Average model (SARIMA). Eight years of weekly data starting from 2010 to 2019 which comprise 521 observations, obtained from Saskatchewan.ca were used in this study. The average red lentil price in Saskatchewan was dollar 24.75 per 100 lb, and weekly prices were highly fluctuating over time. The seasonality and volatility of red lentils are modeled and forecasted by calculating the seasonal index and applying SARIMA models to the time series. The results reveal that the SARIMA (2,1,2)(0,1,1)[52] model provides the best in sample and out-sample performance when predicting the red lentil prices. Hence, this model can be utilized by both growers and end users in making optimal production decisions and in managing overall price risk.

Suggested Citation

  • Roshani W. Divisekara & G. J. M. S. R. Jayasinghe & K. W. S. N. Kumari, 2021. "Forecasting the red lentils commodity market price using SARIMA models," SN Business & Economics, Springer, vol. 1(1), pages 1-13, January.
  • Handle: RePEc:spr:snbeco:v:1:y:2021:i:1:d:10.1007_s43546-020-00020-x
    DOI: 10.1007/s43546-020-00020-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43546-020-00020-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43546-020-00020-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yudong & Wu, Chongfeng, 2012. "Forecasting energy market volatility using GARCH models: Can multivariate models beat univariate models?," Energy Economics, Elsevier, vol. 34(6), pages 2167-2181.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Borucka, 2023. "Seasonal Methods of Demand Forecasting in the Supply Chain as Support for the Company’s Sustainable Growth," Sustainability, MDPI, vol. 15(9), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehmet Balcilar & Elie Bouri & Rangan Gupta & Christian Pierdzioch, 2021. "El Niño, La Niña, and the Forecastability of the Realized Variance of Heating Oil Price Movements," Sustainability, MDPI, vol. 13(14), pages 1-23, July.
    2. Wang, Yudong & Hao, Xianfeng, 2022. "Forecasting the real prices of crude oil: A robust weighted least squares approach," Energy Economics, Elsevier, vol. 116(C).
    3. Babaei Balderlou, Saharnaz & Ebrahimi Torki, Mahyar & Heidari, Hassan, 2013. "تفكيك اثرات منشأ شوك‌هاي نفتي بر همبستگی پویای بین رشد بخش صنعت و معدن و قیمت نفت خام در ایران [Separation of the Effects of Oil Price Shocks Origin on Dynamic Correlation between Growth of Industr," MPRA Paper 79257, University Library of Munich, Germany.
    4. Karasu, Seçkin & Altan, Aytaç, 2022. "Crude oil time series prediction model based on LSTM network with chaotic Henry gas solubility optimization," Energy, Elsevier, vol. 242(C).
    5. Huabin Bian & Renhai Hua & Qingfu Liu & Ping Zhang, 2022. "Petroleum market volatility tracker in China," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(11), pages 2022-2040, November.
    6. Marcin Fałdziński & Piotr Fiszeder & Witold Orzeszko, 2020. "Forecasting Volatility of Energy Commodities: Comparison of GARCH Models with Support Vector Regression," Energies, MDPI, vol. 14(1), pages 1-18, December.
    7. Franco Ruzzenenti, 2015. "Changes in the relationship between the financial and real sector and the present economic financial crisis: study of energy sector and market," Working papers wpaper105, Financialisation, Economy, Society & Sustainable Development (FESSUD) Project.
    8. Gavriilidis, Konstantinos & Kambouroudis, Dimos S. & Tsakou, Katerina & Tsouknidis, Dimitris A., 2018. "Volatility forecasting across tanker freight rates: The role of oil price shocks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 376-391.
    9. Efimova, Olga & Serletis, Apostolos, 2014. "Energy markets volatility modelling using GARCH," Energy Economics, Elsevier, vol. 43(C), pages 264-273.
    10. Jianguo Zhou & Xuechao Yu & Xiaolei Yuan, 2018. "Predicting the Carbon Price Sequence in the Shenzhen Emissions Exchange Using a Multiscale Ensemble Forecasting Model Based on Ensemble Empirical Mode Decomposition," Energies, MDPI, vol. 11(7), pages 1-17, July.
    11. Deyun Wang & Yanling Liu & Zeng Wu & Hongxue Fu & Yong Shi & Haixiang Guo, 2018. "Scenario Analysis of Natural Gas Consumption in China Based on Wavelet Neural Network Optimized by Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 11(4), pages 1-16, April.
    12. Lin, Ling & Jiang, Yong & Xiao, Helu & Zhou, Zhongbao, 2020. "Crude oil price forecasting based on a novel hybrid long memory GARCH-M and wavelet analysis model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 543(C).
    13. Chen, Rongda & Xu, Jianjun, 2019. "Forecasting volatility and correlation between oil and gold prices using a novel multivariate GAS model," Energy Economics, Elsevier, vol. 78(C), pages 379-391.
    14. Halkos, George E. & Tsirivis, Apostolos S., 2019. "Effective energy commodity risk management: Econometric modeling of price volatility," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 234-250.
    15. Apergis, Nicholas & Payne, James E., 2017. "Volatility Modeling of U.S. Metropolitan Retail Gasoline Prices: An Empirical Note," Journal of Regional Analysis and Policy, Mid-Continent Regional Science Association, vol. 48(2), September.
    16. Marchese, Malvina & Kyriakou, Ioannis & Tamvakis, Michael & Di Iorio, Francesca, 2020. "Forecasting crude oil and refined products volatilities and correlations: New evidence from fractionally integrated multivariate GARCH models," Energy Economics, Elsevier, vol. 88(C).
    17. Shahzad, Syed Jawad Hussain & Rehman, Mobeen Ur & Jammazi, Rania, 2019. "Spillovers from oil to precious metals: Quantile approaches," Resources Policy, Elsevier, vol. 61(C), pages 508-521.
    18. Hasanov, Akram Shavkatovich & Poon, Wai Ching & Al-Freedi, Ajab & Heng, Zin Yau, 2018. "Forecasting volatility in the biofuel feedstock markets in the presence of structural breaks: A comparison of alternative distribution functions," Energy Economics, Elsevier, vol. 70(C), pages 307-333.
    19. Li, Gang & Li, Yong, 2015. "Forecasting copper futures volatility under model uncertainty," Resources Policy, Elsevier, vol. 46(P2), pages 167-176.
    20. Zhang, Yue-Jun & Yao, Ting & He, Ling-Yun & Ripple, Ronald, 2019. "Volatility forecasting of crude oil market: Can the regime switching GARCH model beat the single-regime GARCH models?," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 302-317.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snbeco:v:1:y:2021:i:1:d:10.1007_s43546-020-00020-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.