IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v24y2021i1d10.1007_s11203-020-09231-3.html
   My bibliography  Save this article

EM algorithm for stochastic hybrid systems

Author

Listed:
  • Masaaki Fukasawa

    (Osaka University)

Abstract

A stochastic hybrid system, also known as a switching diffusion, is a continuous-time Markov process with state space consisting of discrete and continuous parts. We consider parametric estimation of the Q matrix for the discrete state transitions and of the drift coefficient for the diffusion part. First, we derive the likelihood function under the complete observation of a sample path in continuous-time. Then, extending a finite-dimensional filter for hidden Markov models developed by Elliott et al. (Hidden Markov Models, Springer, 1995) to stochastic hybrid systems, we derive the likelihood function and the EM algorithm under a partial observation where the continuous state is monitored continuously in time, while the discrete state is unobserved.

Suggested Citation

  • Masaaki Fukasawa, 2021. "EM algorithm for stochastic hybrid systems," Statistical Inference for Stochastic Processes, Springer, vol. 24(1), pages 223-239, April.
  • Handle: RePEc:spr:sistpr:v:24:y:2021:i:1:d:10.1007_s11203-020-09231-3
    DOI: 10.1007/s11203-020-09231-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11203-020-09231-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11203-020-09231-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dembo, A. & Zeitouni, O., 1986. "Parameter estimation of partially observed continuous time stochastic processes via the EM algorithm," Stochastic Processes and their Applications, Elsevier, vol. 23(1), pages 91-113, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elliott, R. J. & Malcolm, W. P. & Tsoi, Allanus H., 2003. "Robust parameter estimation for asset price models with Markov modulated volatilities," Journal of Economic Dynamics and Control, Elsevier, vol. 27(8), pages 1391-1409, June.
    2. Robert Elliott & Eckhard Platen, 1999. "Hidden Markov Chain Filtering for Generalised Bessel Processes," Research Paper Series 23, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. Elliott Robert J. & Siu Tak Kuen & Lau John W., 2018. "A hidden Markov regime-switching smooth transition model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 22(4), pages 1-21, September.
    4. Damian Camilla & Eksi Zehra & Frey Rüdiger, 2018. "EM algorithm for Markov chains observed via Gaussian noise and point process information: Theory and case studies," Statistics & Risk Modeling, De Gruyter, vol. 35(1-2), pages 51-72, January.
    5. Sy-Miin Chow & Zhaohua Lu & Andrew Sherwood & Hongtu Zhu, 2016. "Fitting Nonlinear Ordinary Differential Equation Models with Random Effects and Unknown Initial Conditions Using the Stochastic Approximation Expectation–Maximization (SAEM) Algorithm," Psychometrika, Springer;The Psychometric Society, vol. 81(1), pages 102-134, March.
    6. Elliott, Robert J. & Siu, Tak Kuen & Badescu, Alex, 2010. "On mean-variance portfolio selection under a hidden Markovian regime-switching model," Economic Modelling, Elsevier, vol. 27(3), pages 678-686, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:24:y:2021:i:1:d:10.1007_s11203-020-09231-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.