IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v22y2019i1d10.1007_s11203-017-9169-1.html
   My bibliography  Save this article

Nonparametric recursive estimation of the derivative of the regression function with application to sea shores water quality

Author

Listed:
  • Bernard Bercu

    (Université de Bordeaux)

  • Sami Capderou

    (Université de Bordeaux)

  • Gilles Durrieu

    (Université de Bretagne Sud
    Université de la Nouvelle-Calédonie)

Abstract

This paper is devoted to the nonparametric estimation of the derivative of the regression function in a nonparametric regression model. We implement a very efficient and easy to handle statistical procedure based on the derivative of the recursive Nadaraya–Watson estimator. We establish the almost sure convergence as well as the asymptotic normality for our estimates. We also illustrate our nonparametric estimation procedure on simulated data and real life data associated with sea shores water quality and valvometry.

Suggested Citation

  • Bernard Bercu & Sami Capderou & Gilles Durrieu, 2019. "Nonparametric recursive estimation of the derivative of the regression function with application to sea shores water quality," Statistical Inference for Stochastic Processes, Springer, vol. 22(1), pages 17-40, April.
  • Handle: RePEc:spr:sistpr:v:22:y:2019:i:1:d:10.1007_s11203-017-9169-1
    DOI: 10.1007/s11203-017-9169-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11203-017-9169-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11203-017-9169-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johnston, Gordon J., 1982. "Probabilities of maximal deviations for nonparametric regression function estimates," Journal of Multivariate Analysis, Elsevier, vol. 12(3), pages 402-414, September.
    2. Blondin, David, 2007. "Rates of strong uniform consistency for local least squares kernel regression estimators," Statistics & Probability Letters, Elsevier, vol. 77(14), pages 1526-1534, August.
    3. Paul Deheuvels & David Mason, 2004. "General Asymptotic Confidence Bands Based on Kernel-type Function Estimators," Statistical Inference for Stochastic Processes, Springer, vol. 7(3), pages 225-277, October.
    4. Aboubacar Amiri, 2012. "Recursive regression estimators with application to nonparametric prediction," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(1), pages 169-186.
    5. Kazuo Noda, 1976. "Estimation of a regression function by the parzen kernel-type density estimators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 28(1), pages 221-234, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Senga Kiessé, Tristan & Durrieu, Gilles, 2024. "On a discrete symmetric optimal associated kernel for estimating count data distributions," Statistics & Probability Letters, Elsevier, vol. 208(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Majid Mojirsheibani, 2022. "On the maximal deviation of kernel regression estimators with NMAR response variables," Statistical Papers, Springer, vol. 63(5), pages 1677-1705, October.
    2. Aboubacar Amiri & Baba Thiam, 2018. "Regression estimation by local polynomial fitting for multivariate data streams," Statistical Papers, Springer, vol. 59(2), pages 813-843, June.
    3. repec:hum:wpaper:sfb649dp2015-031 is not listed on IDEAS
    4. Liugen Xue, 2010. "Empirical Likelihood Local Polynomial Regression Analysis of Clustered Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(4), pages 644-663, December.
    5. Paul Deheuvels & Sarah Ouadah, 2013. "Uniform-in-Bandwidth Functional Limit Laws," Journal of Theoretical Probability, Springer, vol. 26(3), pages 697-721, September.
    6. Kim, Kun Ho & Chao, Shih-Kang & Härdle, Wolfgang Karl, 2020. "Simultaneous Inference of the Partially Linear Model with a Multivariate Unknown Function," IRTG 1792 Discussion Papers 2020-008, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    7. Aboubacar Amiri, 2013. "Asymptotic normality of recursive estimators under strong mixing conditions," Statistical Inference for Stochastic Processes, Springer, vol. 16(2), pages 81-96, July.
    8. Li Cai & Lijie Gu & Qihua Wang & Suojin Wang, 2021. "Simultaneous confidence bands for nonparametric regression with missing covariate data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(6), pages 1249-1279, December.
    9. Hidalgo, Javier, 2007. "Specification testing for regression models with dependent data," LSE Research Online Documents on Economics 6799, London School of Economics and Political Science, LSE Library.
    10. Amiri, Aboubacar & Crambes, Christophe & Thiam, Baba, 2014. "Recursive estimation of nonparametric regression with functional covariate," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 154-172.
    11. Shih-Kang Chao & Katharina Proksch & Holger Dette & Wolfgang Karl Härdle, 2017. "Confidence Corridors for Multivariate Generalized Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 70-85, January.
    12. Ali Al-Sharadqah & Majid Mojirsheibani, 2020. "A simple approach to construct confidence bands for a regression function with incomplete data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(1), pages 81-99, March.
    13. Bouzebda, Salim & Chaouch, Mohamed, 2022. "Uniform limit theorems for a class of conditional Z-estimators when covariates are functions," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    14. Timothy B Armstrong & Michal Kolesár, 2018. "A Simple Adjustment for Bandwidth Snooping," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(2), pages 732-765.
    15. Melanie Birke & Natalie Neumeyer, 2013. "Testing Monotonicity of Regression Functions – An Empirical Process Approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(3), pages 438-454, September.
    16. Salim Bouzebda & Thouria El-hadjali & Anouar Abdeldjaoued Ferfache, 2023. "Uniform in Bandwidth Consistency of Conditional U-statistics Adaptive to Intrinsic Dimension in Presence of Censored Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1548-1606, August.
    17. Said Attaoui & Nengxiang Ling, 2016. "Asymptotic results of a nonparametric conditional cumulative distribution estimator in the single functional index modeling for time series data with applications," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(5), pages 485-511, July.
    18. Norberto Rodríguez & Patricia Siado, 2003. "Un Pronóstico No Paramétrico De La Inflación Colombiana," Borradores de Economia 3691, Banco de la Republica.
    19. Camerlenghi, F. & Capasso, V. & Villa, E., 2014. "On the estimation of the mean density of random closed sets," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 65-88.
    20. Jiaqi Li & Likai Chen & Kun Ho Kim & Tianwei Zhou, 2022. "Simultaneous Inference of a Partially Linear Model in Time Series," Papers 2212.10359, arXiv.org, revised Sep 2023.
    21. Néstor Aguilera & Liliana Forzani & Pedro Morin, 2011. "On uniform consistent estimators for convex regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(4), pages 897-908.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:22:y:2019:i:1:d:10.1007_s11203-017-9169-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.