IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v78y2009i1d10.1007_s11192-008-1764-x.html
   My bibliography  Save this article

Redistributed random sampling method for categorizing materials research publications from SCI database: Metallurgy and polymer subfields

Author

Listed:
  • T. Buranathiti

    (King Mongkut’s University of Technology Thonburi (KMUTT))

  • N. Premkamolnetr

    (King Mongkut’s University of Technology Thonburi (KMUTT))

  • T. Markpin

    (King Mongkut’s University of Technology Thonburi (KMUTT))

  • P. Ratchatahirun

    (King Mongkut’s University of Technology Thonburi (KMUTT))

  • W. Yochai

    (King Mongkut’s University of Technology Thonburi (KMUTT))

  • N. Sombatsompop

    (King Mongkut’s University of Technology Thonburi (KMUTT))

Abstract

This article introduced two sampling methods, including Directly Random Sampling (DRS) and Redistributed Random Sampling (RRS) methods for categorization of a large number of research articles retrieved from metallurgy and polymer subfields from the Science Citation Index (SCI) database. The accuracy of the proposed sampling methods was considered in association by comparing with reference results previously obtained by Fully Retrieving Sampling (FRS) method, which involved analyzing the contents and categories of all articles from the database. The results suggested that RRS and DRS methods were appropriate, efficient and reasonably accurate for categorization of relatively large volume of research articles. RRS method was highly recommended, especially when the contents of sample articles was unevenly distributed. By DRS and RRS methods, only about 6.3% of total articles were required for obtaining similar results as those given by FRS method. The percentage Expected Worst Errors (EWE) from DRS and RRS methods were observed to range from 1.0 to 5.5%. The EWE value could be reduced by increasing the sample size.

Suggested Citation

  • T. Buranathiti & N. Premkamolnetr & T. Markpin & P. Ratchatahirun & W. Yochai & N. Sombatsompop, 2009. "Redistributed random sampling method for categorizing materials research publications from SCI database: Metallurgy and polymer subfields," Scientometrics, Springer;Akadémiai Kiadó, vol. 78(1), pages 13-21, January.
  • Handle: RePEc:spr:scient:v:78:y:2009:i:1:d:10.1007_s11192-008-1764-x
    DOI: 10.1007/s11192-008-1764-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-008-1764-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-008-1764-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kevin W. Boyack & Richard Klavans & Katy Börner, 2005. "Mapping the backbone of science," Scientometrics, Springer;Akadémiai Kiadó, vol. 64(3), pages 351-374, August.
    2. N. Sombatsompop & T. Markpin & T. Buranathiti & P. Ratchatahirun & T. Metheenukul & N. Premkamolnetr & W. Yochai, 2007. "Categorization and trend of materials science research from Science Citation Index (SCI) database: A case study of ceramics, metallurgy, and polymer subfields," Scientometrics, Springer;Akadémiai Kiadó, vol. 71(2), pages 283-302, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balland, Pierre-Alexandre & Boschma, Ron, 2022. "Do scientific capabilities in specific domains matter for technological diversification in European regions?," Research Policy, Elsevier, vol. 51(10).
    2. Takahiro Kawamura & Katsutaro Watanabe & Naoya Matsumoto & Shusaku Egami & Mari Jibu, 2018. "Funding map using paragraph embedding based on semantic diversity," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 941-958, August.
    3. Andreas Bjurström & Merritt Polk, 2011. "Climate change and interdisciplinarity: a co-citation analysis of IPCC Third Assessment Report," Scientometrics, Springer;Akadémiai Kiadó, vol. 87(3), pages 525-550, June.
    4. Citron, Daniel T. & Way, Samuel F., 2018. "Network assembly of scientific communities of varying size and specificity," Journal of Informetrics, Elsevier, vol. 12(1), pages 181-190.
    5. Xuefeng Wang & Huichao Ren & Yun Chen & Yuqin Liu & Yali Qiao & Ying Huang, 2019. "Measuring patent similarity with SAO semantic analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 1-23, October.
    6. Giovanni Abramo & Ciriaco Andrea D'Angelo & Flavia Costa, 2012. "Identifying interdisciplinarity through the disciplinary classification of coauthors of scientific publications," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(11), pages 2206-2222, November.
    7. Jianhua Hou, 2017. "Exploration into the evolution and historical roots of citation analysis by referenced publication year spectroscopy," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1437-1452, March.
    8. Yongjun Zhu & Erjia Yan, 2015. "Dynamic subfield analysis of disciplines: an examination of the trading impact and knowledge diffusion patterns of computer science," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(1), pages 335-359, July.
    9. van Eck, N.J.P. & Waltman, L., 2009. "How to Normalize Co-Occurrence Data? An Analysis of Some Well-Known Similarity Measures," ERIM Report Series Research in Management ERS-2009-001-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    10. Silva, F.N. & Viana, M.P. & Travençolo, B.A.N. & Costa, L. da F., 2011. "Investigating relationships within and between category networks in Wikipedia," Journal of Informetrics, Elsevier, vol. 5(3), pages 431-438.
    11. John McLevey & Alexander V. Graham & Reid McIlroy-Young & Pierson Browne & Kathryn S. Plaisance, 2018. "Interdisciplinarity and insularity in the diffusion of knowledge: an analysis of disciplinary boundaries between philosophy of science and the sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 331-349, October.
    12. Wu, Lingfei & Kittur, Aniket & Youn, Hyejin & Milojević, Staša & Leahey, Erin & Fiore, Stephen M. & Ahn, Yong-Yeol, 2022. "Metrics and mechanisms: Measuring the unmeasurable in the science of science," Journal of Informetrics, Elsevier, vol. 16(2).
    13. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    14. Perianes-Rodriguez, Antonio & Ruiz-Castillo, Javier, 2017. "A comparison of the Web of Science and publication-level classification systems of science," Journal of Informetrics, Elsevier, vol. 11(1), pages 32-45.
    15. Ludo Waltman & Nees Jan Eck, 2012. "A new methodology for constructing a publication-level classification system of science," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(12), pages 2378-2392, December.
    16. William B. Gartner & Per Davidsson & Shaker A. Zahra, 2006. "Are you Talking to Me? The Nature of Community in Entrepreneurship Scholarship," Entrepreneurship Theory and Practice, , vol. 30(3), pages 321-331, May.
    17. Xie, Yundong & Wu, Qiang & Zhang, Peng & Li, Xingchen, 2020. "Information Science and Library Science (IS-LS) journal subject categorisation and comparison based on editorship information," Journal of Informetrics, Elsevier, vol. 14(4).
    18. Li, Jing & Yu, Qian, 2024. "Scientists’ disciplinary characteristics and collaboration behaviour under the convergence paradigm: A multilevel network perspective," Journal of Informetrics, Elsevier, vol. 18(1).
    19. Jimi Adams & Ryan Light, 2014. "Mapping Interdisciplinary Fields: Efficiencies, Gaps and Redundancies in HIV/AIDS Research," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-13, December.
    20. Rosa Rodriguez-Sánchez & J. A. García & J. Fdez-Valdivia, 2014. "Evolutionary games between subject categories," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 869-888, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:78:y:2009:i:1:d:10.1007_s11192-008-1764-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.