IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v70y2007i3d10.1007_s11192-007-0305-3.html
   My bibliography  Save this article

How cross-disciplinary is bionanotechnology? Explorations in the specialty of molecular motors

Author

Listed:
  • Ismael Rafols

    (University of Sussex)

  • Martin Meyer

    (University of Sussex
    K.U. Leuven
    Helsinki University of Technology)

Abstract

Nanotechnology has been presented in the policy discourse as an intrinsically interdisciplinary field, requiring collaborations among researchers with different backgrounds, and specific funding schemes supporting knowledge-integration activities. Early bibliometric studies supported this interdisciplinary vision (Meyer & Persson, 1998), but recent results suggest that nanotechnology is (yet) a mixed bag with various mono-disciplinary subfields (Schummer, 2004). We have reexamined the issue at the research project level, carrying out five case studies in molecular motors, a specialty of bionanotechnology. Relying both in data from interviews and bibliometric indicators, we have developed a multidimensional analysis (Sanz-Menéndez et al., 2001) in order to explore the extent and types of cross-disciplinary practices in each project. We have found that there is a consistent high degree of cross-disciplinarity in the cognitive practices of research (i.e., use of references and instrumentalities) but a more erratic and narrower degree in the social dimensions (i.e., affiliation and researchers’ background). This suggests that cross-disciplinarity is an eminently epistemic characteristic and that bibliometric indicators based on citations and references capture more accurately the generation of cross-disciplinary knowledge than approaches tracking co-authors’ disciplinary affiliations. In the light of these findings we raise the question whether policies focusing on formal collaborations between laboratories are the most appropriate to facilitate cross-disciplinary knowledge acquisition and generation.

Suggested Citation

  • Ismael Rafols & Martin Meyer, 2007. "How cross-disciplinary is bionanotechnology? Explorations in the specialty of molecular motors," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 633-650, March.
  • Handle: RePEc:spr:scient:v:70:y:2007:i:3:d:10.1007_s11192-007-0305-3
    DOI: 10.1007/s11192-007-0305-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-007-0305-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-007-0305-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ed J. Rinia & Thed N. van Leeuwen & Eppo E. W. Bruins & Hendrik G. van Vuren & Anthony F. J. van Raan, 2002. "Measuring knowledge transfer between fields of science," Scientometrics, Springer;Akadémiai Kiadó, vol. 54(3), pages 347-362, July.
    2. Fernanda Morillo & María Bordons & Isabel Gómez, 2001. "An approach to interdisciplinarity through bibliometric indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 51(1), pages 203-222, April.
    3. Tibor Braun & András Schubert, 2003. "A quantitative view on the coming of age of interdisciplinarity in the sciences 1980-1999," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(1), pages 183-189, September.
    4. Loet Leydesdorff & Henry Etzkowitz, 1998. "The Triple Helix as a model for innovation studies," Science and Public Policy, Oxford University Press, vol. 25(3), pages 195-203, June.
    5. Luis Sanz-Menéndez & María Bordons & M Angeles Zulueta, 2001. "Interdisciplinarity as a multidimensional concept: its measure in three different research areas," Research Evaluation, Oxford University Press, vol. 10(1), pages 47-58, April.
    6. Joachim Schummer, 2004. "Multidisciplinarity, interdisciplinarity, and patterns of research collaboration in nanoscience and nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 59(3), pages 425-465, March.
    7. Bourke, Paul & Butler, Linda, 1998. "Institutions and the map of science: matching university departments and fields of research," Research Policy, Elsevier, vol. 26(6), pages 711-718, February.
    8. Thed van Leeuwen & Robert Tijssen, 2000. "Interdisciplinary dynamics of modern science: analysis of cross-disciplinary citation flows," Research Evaluation, Oxford University Press, vol. 9(3), pages 183-187, December.
    9. Martin Meyer, 2007. "What do we know about innovation in nanotechnology? Some propositions about an emerging field between hype and path-dependency," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 779-810, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ismael Rafols & Martin Meyer, 2010. "Diversity and network coherence as indicators of interdisciplinarity: case studies in bionanoscience," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 263-287, February.
    2. Elise Bassecoulard & Alain Lelu & Michel Zitt, 2007. "Mapping nanosciences by citation flows: A preliminary analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 859-880, March.
    3. Francesco Giovanni Avallone & Alberto Quagli & Paola Ramassa, 2022. "Interdisciplinary research by accounting scholars: An exploratory study," FINANCIAL REPORTING, FrancoAngeli Editore, vol. 2022(2), pages 5-34.
    4. Shiji Chen & Clément Arsenault & Yves Gingras & Vincent Larivière, 2015. "Exploring the interdisciplinary evolution of a discipline: the case of Biochemistry and Molecular Biology," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(2), pages 1307-1323, February.
    5. Giovanni Abramo & Ciriaco Andrea D'Angelo & Flavia Costa, 2012. "Identifying interdisciplinarity through the disciplinary classification of coauthors of scientific publications," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(11), pages 2206-2222, November.
    6. Hiroko Nakamura & Shinji Suzuki & Tomobe Hironori & Yuya Kajikawa & Ichiro Sakata, 2011. "Citation lag analysis in supply chain research," Scientometrics, Springer;Akadémiai Kiadó, vol. 87(2), pages 221-232, May.
    7. Zhichao Ba & Yujie Cao & Jin Mao & Gang Li, 2019. "A hierarchical approach to analyzing knowledge integration between two fields—a case study on medical informatics and computer science," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1455-1486, June.
    8. Wang, Lili & Notten, Ad, 2011. "Mapping the interdisciplinary nature and co-evolutionary patterns in five nano-industrial sectors," MERIT Working Papers 2011-029, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    9. Alfonso Ávila-Robinson & Cristian Mejia & Shintaro Sengoku, 2021. "Are bibliometric measures consistent with scientists’ perceptions? The case of interdisciplinarity in research," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7477-7502, September.
    10. Ismael Rafols & Alan Porter & Loet Leydesdorff, 2009. "Overlay Maps of Science: a New Tool for Research Policy," SPRU Working Paper Series 179, SPRU - Science Policy Research Unit, University of Sussex Business School.
    11. Isamel Rafols & Martin Meyer, 2006. "Knowledge-sourcing strategies for cross-disciplinarity in bionanotechnology," SPRU Working Paper Series 152, SPRU - Science Policy Research Unit, University of Sussex Business School.
    12. Abramo, Giovanni & D’Angelo, Ciriaco Andrea & Zhang, Lin, 2018. "A comparison of two approaches for measuring interdisciplinary research output: The disciplinary diversity of authors vs the disciplinary diversity of the reference list," Journal of Informetrics, Elsevier, vol. 12(4), pages 1182-1193.
    13. Nicolas Battard, 2012. "Convergence and multidisciplinarity in nanotechnology: Laboratories as technological hubs," Post-Print hal-01514795, HAL.
    14. Wooseok Jang & Heeyeul Kwon & Yongtae Park & Hakyeon Lee, 2018. "Predicting the degree of interdisciplinarity in academic fields: the case of nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 231-254, July.
    15. Sander Zwanenburg & Maryam Nakhoda & Peter Whigham, 2022. "Toward greater consistency and validity in measuring interdisciplinarity: a systematic and conceptual evaluation," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7769-7788, December.
    16. R. Karpagam & S. Gopalakrishnan & M. Natarajan & B. Ramesh Babu, 2011. "Mapping of nanoscience and nanotechnology research in India: a scientometric analysis, 1990–2009," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(2), pages 501-522, November.
    17. Andreas Bjurström & Merritt Polk, 2011. "Climate change and interdisciplinarity: a co-citation analysis of IPCC Third Assessment Report," Scientometrics, Springer;Akadémiai Kiadó, vol. 87(3), pages 525-550, June.
    18. Rafols, Ismael & Leydesdorff, Loet & O’Hare, Alice & Nightingale, Paul & Stirling, Andy, 2012. "How journal rankings can suppress interdisciplinary research: A comparison between Innovation Studies and Business & Management," Research Policy, Elsevier, vol. 41(7), pages 1262-1282.
    19. Ran Xu & Navid Ghaffarzadegan, 2018. "Neuroscience bridging scientific disciplines in health: Who builds the bridge, who pays for it?," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 1183-1204, November.
    20. Yuxian Liu & Yishan Wu & Sandra Rousseau & Ronald Rousseau, 2020. "Reflections on and a short review of the science of team science," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(2), pages 937-950, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:70:y:2007:i:3:d:10.1007_s11192-007-0305-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.