IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v58y2003i3d10.1023_bscie.0000006875.61813.f6.html
   My bibliography  Save this article

Critical and emerging technologies in Materials, Manufacturing, and Industrial Engineering: A study for priority setting

Author

Listed:
  • Murat Bengisu

    (Eastern Mediterranean University)

Abstract

Technologies that were assumed to be critical or emerging in Materials, Manufacturing, and Industrial Engineering were combined from different sources. These were compared to recent data and trends based on publications as well as patents in these fields. Some of these technologies were found to be non-critical or non-emergent. Top-ten lists of critical and emerging technologies were derived using simple statistical tools and easily accessible databases. The present methodology is proposed as an effective procedure for priority setting in science and technology policy making.

Suggested Citation

  • Murat Bengisu, 2003. "Critical and emerging technologies in Materials, Manufacturing, and Industrial Engineering: A study for priority setting," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(3), pages 473-487, November.
  • Handle: RePEc:spr:scient:v:58:y:2003:i:3:d:10.1023_b:scie.0000006875.61813.f6
    DOI: 10.1023/B:SCIE.0000006875.61813.f6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/B:SCIE.0000006875.61813.f6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/B:SCIE.0000006875.61813.f6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hicks, Diana & Breitzman, Tony & Olivastro, Dominic & Hamilton, Kimberly, 2001. "The changing composition of innovative activity in the US -- a portrait based on patent analysis," Research Policy, Elsevier, vol. 30(4), pages 681-703, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Chao & Huang, Cui & Su, Jun, 2018. "An improved SAO network-based method for technology trend analysis: A case study of graphene," Journal of Informetrics, Elsevier, vol. 12(1), pages 271-286.
    2. Can Huang & Ad Notten & Nico Rasters, 2011. "Nanoscience and technology publications and patents: a review of social science studies and search strategies," The Journal of Technology Transfer, Springer, vol. 36(2), pages 145-172, April.
    3. Lai, Kuei-Kuei & Chen, Yu-Long & Kumar, Vimal & Daim, Tugrul & Verma, Pratima & Kao, Fang-Chen & Liu, Ruirong, 2023. "Mapping technological trajectories and exploring knowledge sources: A case study of E-payment technologies," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    4. Bornmann, Lutz & Haunschild, Robin, 2022. "Empirical analysis of recent temporal dynamics of research fields: Annual publications in chemistry and related areas as an example," Journal of Informetrics, Elsevier, vol. 16(2).
    5. Chao Yang & Donghua Zhu & Xuefeng Wang & Yi Zhang & Guangquan Zhang & Jie Lu, 2017. "Requirement-oriented core technological components’ identification based on SAO analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1229-1248, September.
    6. Yi Zhang & Xiao Zhou & Alan L. Porter & Jose M. Vicente Gomila & An Yan, 2014. "Triple Helix innovation in China’s dye-sensitized solar cell industry: hybrid methods with semantic TRIZ and technology roadmapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(1), pages 55-75, April.
    7. Ta-Shun Cho & Hsin-Yu Shih, 2011. "Patent citation network analysis of core and emerging technologies in Taiwan: 1997–2008," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(3), pages 795-811, December.
    8. Chaker Jebari & Enrique Herrera-Viedma & Manuel Jesus Cobo, 2021. "The use of citation context to detect the evolution of research topics: a large-scale analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 2971-2989, April.
    9. Zhang, Yi & Zhang, Guangquan & Chen, Hongshu & Porter, Alan L. & Zhu, Donghua & Lu, Jie, 2016. "Topic analysis and forecasting for science, technology and innovation: Methodology with a case study focusing on big data research," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 179-191.
    10. Ying Huang & Donghua Zhu & Yue Qian & Yi Zhang & Alan L. Porter & Yuqin Liu & Ying Guo, 2017. "A hybrid method to trace technology evolution pathways: a case study of 3D printing," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 185-204, April.
    11. Rotolo, Daniele & Hicks, Diana & Martin, Ben R., 2015. "What is an emerging technology?," Research Policy, Elsevier, vol. 44(10), pages 1827-1843.
    12. Radhamany Sooryamoorthy, 2011. "Scientific publications of engineers in South Africa, 1975–2005," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(1), pages 211-226, January.
    13. Huang, Can & Notten, Ad & Rasters, Nico, 2008. "Nanotechnology Publications and Patents: A Review of Social Science Studies and Search Strategies," MERIT Working Papers 2008-058, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suma Athreye & Martha Prevezer, 2008. "R&D offshoring and the domestic science base in India and China," Working Papers 26, Queen Mary, University of London, School of Business and Management, Centre for Globalisation Research.
    2. Cassiman, Bruno & Veugelers, Reinhilde & Zuniga, Pluvia, 2009. "Diversity of science linkages and innovation performance: some empirical evidence from Flemish firms," Economics Discussion Papers 2009-30, Kiel Institute for the World Economy (IfW Kiel).
    3. Deepak Hegde, 2005. "Public and Private Universities: Unequal Sources of Regional Innovation?," Economic Development Quarterly, , vol. 19(4), pages 373-386, November.
    4. Lee Branstetter & Kwon Hyeog Ug, 2004. "The Restructuring Of Japanese Research And Development: The Increasing Impact Of Science On Japanese R&D," Discussion papers 04021, Research Institute of Economy, Trade and Industry (RIETI).
    5. Kim, Jeeeun & Lee, Sungjoo, 2015. "Patent databases for innovation studies: A comparative analysis of USPTO, EPO, JPO and KIPO," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 332-345.
    6. Jinyoung Kim & Gerald Marschke, 2004. "Accounting for the recent surge in U.S. patenting: changes in R&D expenditures, patent yields, and the high tech sector," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 13(6), pages 543-558.
    7. Nobuya Fukugawa, 2016. "Knowledge creation and dissemination by Kosetsushi in sectoral innovation systems: insights from patent data," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 2303-2327, December.
    8. Feldman, Maryann P. & Kogler, Dieter F., 2010. "Stylized Facts in the Geography of Innovation," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 381-410, Elsevier.
    9. Jennifer Hunt & Marjolaine Gauthier-Loiselle, 2010. "How Much Does Immigration Boost Innovation?," American Economic Journal: Macroeconomics, American Economic Association, vol. 2(2), pages 31-56, April.
    10. onder Nomaler & Bart Verspagen, 2008. "Knowledge Flows, Patent Citations and the Impact of Science on Technology," Economic Systems Research, Taylor & Francis Journals, vol. 20(4), pages 339-366.
    11. Julie Callaert & Maikel Pellens & Bart Looy, 2014. "Sources of inspiration? Making sense of scientific references in patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 1617-1629, March.
    12. FUKUGAWA Nobuya & GOTO Akira, 2016. "Problem Solving and Intermediation by Local Public Technology Centers in Regional Innovation Systems: The first report on a branch-level survey on technical consultation," Discussion papers 16062, Research Institute of Economy, Trade and Industry (RIETI).
    13. Keld Laursen & Ammon Salter, 2003. "Searching Low and High What Types of Firms use Universities as a Source of Innovation?," DRUID Working Papers 03-16, DRUID, Copenhagen Business School, Department of Industrial Economics and Strategy/Aalborg University, Department of Business Studies.
    14. Bar-Ilan, Judit, 2008. "Informetrics at the beginning of the 21st century—A review," Journal of Informetrics, Elsevier, vol. 2(1), pages 1-52.
    15. Christian Sternitzke, 2009. "Patents and publications as sources of novel and inventive knowledge," Scientometrics, Springer;Akadémiai Kiadó, vol. 79(3), pages 551-561, June.
    16. Adam B. Jaffe & Gaétan de Rassenfosse, 2017. "Patent citation data in social science research: Overview and best practices," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(6), pages 1360-1374, June.
    17. Jinyoung Kim & Sangjoon Lee & Gerald Marschke, 2014. "Impact of university scientists on innovations in nanotechnology," Chapters, in: Sanghoon Ahn & Bronwyn H. Hall & Keun Lee (ed.), Intellectual Property for Economic Development, chapter 6, pages 141-158, Edward Elgar Publishing.
    18. Ashish Arora & Sharon Belenzon & Lia Sheer, 2017. "Back to Basics: Why do Firms Invest in Research?," NBER Working Papers 23187, National Bureau of Economic Research, Inc.
    19. Diana Hicks, 2005. "The Four Literatures Of Social Sciences," IBT Journal of Business Studies (JBS), Ilma University, Faculty of Management Science, vol. 1(1), pages 1-20.
    20. Sandro Mendonca, 2006. "The Revolution Within: Ict And The Shifting Knowledge Base Of The World'S Largest Companies," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 15(8), pages 777-799.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:58:y:2003:i:3:d:10.1023_b:scie.0000006875.61813.f6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.