IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v129y2024i8d10.1007_s11192-024-05105-0.html
   My bibliography  Save this article

Ten year citation prediction model for systematic reviews using early years citation data

Author

Listed:
  • Manuel Marques-Cruz

    (University of Porto
    University of Porto
    Public Health Unit Marão e Douro Norte, Local Health Unit Trás-os-Montes e Alto Douro)

  • Daniel Martinho Dias

    (University of Porto
    University of Porto
    Local Health Unit Médio Ave)

  • João A. Fonseca

    (University of Porto
    University of Porto)

  • Bernardo Sousa-Pinto

    (University of Porto
    University of Porto)

Abstract

Citation counts are frequently used for assessing the scientific impact of articles. Current approaches for forecasting future citations counts have important limitations. This study aims to analyse and predict the trajectories of citation counts of systematic reviews (SR) based on their citation profiles in the previous years and predict quantiles of future citation counts. We included all SR published between 2010 and 2012 in medical journals indexed in the Web of Science. A longitudinal k-means (KML) clustering approach was applied to identify trajectories of citations counts 10 years after publication, according to the yearly citation count, the proportion of all cites attained in a specific year and the annual variation in citation counts. Finally, we built multinomial logistic regression models aiming to predict in what tercile or quartile of citation counts a SR would be 10 years after publication. Using clustering approaches, we obtained 24 groups of SR. Two groups (7.9% of the articles) had an average of > 200 citations, while two other groups (10.4% of the articles) presented an average of

Suggested Citation

  • Manuel Marques-Cruz & Daniel Martinho Dias & João A. Fonseca & Bernardo Sousa-Pinto, 2024. "Ten year citation prediction model for systematic reviews using early years citation data," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(8), pages 4847-4862, August.
  • Handle: RePEc:spr:scient:v:129:y:2024:i:8:d:10.1007_s11192-024-05105-0
    DOI: 10.1007/s11192-024-05105-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-024-05105-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-024-05105-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Loet Leydesdorff & Paul Wouters & Lutz Bornmann, 2016. "Professional and citizen bibliometrics: complementarities and ambivalences in the development and use of indicators—a state-of-the-art report," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 2129-2150, December.
    2. Hamid Bouabid & Vincent Larivière, 2013. "The lengthening of papers’ life expectancy: a diachronous analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(3), pages 695-717, December.
    3. Kuhn, Max, 2008. "Building Predictive Models in R Using the caret Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i05).
    4. Bornmann, Lutz & Leydesdorff, Loet, 2017. "Skewness of citation impact data and covariates of citation distributions: A large-scale empirical analysis based on Web of Science data," Journal of Informetrics, Elsevier, vol. 11(1), pages 164-175.
    5. Christophe Genolini & Bruno Falissard, 2010. "KmL: k-means for longitudinal data," Computational Statistics, Springer, vol. 25(2), pages 317-328, June.
    6. David Moher & Alessandro Liberati & Jennifer Tetzlaff & Douglas G Altman & The PRISMA Group, 2009. "Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement," PLOS Medicine, Public Library of Science, vol. 6(7), pages 1-6, July.
    7. Dag W. Aksnes & Liv Langfeldt & Paul Wouters, 2019. "Citations, Citation Indicators, and Research Quality: An Overview of Basic Concepts and Theories," SAGE Open, , vol. 9(1), pages 21582440198, February.
    8. Iman Tahamtan & Askar Safipour Afshar & Khadijeh Ahamdzadeh, 2016. "Factors affecting number of citations: a comprehensive review of the literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1195-1225, June.
    9. Lutz Bornmann & Werner Marx, 2014. "How to evaluate individual researchers working in the natural and life sciences meaningfully? A proposal of methods based on percentiles of citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 487-509, January.
    10. Wanjun Xia & Tianrui Li & Chongshou Li, 2023. "A review of scientific impact prediction: tasks, features and methods," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(1), pages 543-585, January.
    11. Jerome K. Vanclay, 2012. "Impact factor: outdated artefact or stepping-stone to journal certification?," Scientometrics, Springer;Akadémiai Kiadó, vol. 92(2), pages 211-238, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raminta Pranckutė, 2021. "Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World," Publications, MDPI, vol. 9(1), pages 1-59, March.
    2. Eugenio Petrovich, 2022. "Bibliometrics in Press. Representations and uses of bibliometric indicators in the Italian daily newspapers," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2195-2233, May.
    3. Lutz Bornmann & Julian N. Marewski, 2019. "Heuristics as conceptual lens for understanding and studying the usage of bibliometrics in research evaluation," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 419-459, August.
    4. Bornmann, Lutz & Tekles, Alexander, 2021. "Convergent validity of several indicators measuring disruptiveness with milestone assignments to physics papers by experts," Journal of Informetrics, Elsevier, vol. 15(3).
    5. Stefano Mammola & Elena Piano & Alberto Doretto & Enrico Caprio & Dan Chamberlain, 2022. "Measuring the influence of non-scientific features on citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(7), pages 4123-4137, July.
    6. Gabriel-Alexandru Vȋiu & Mihai Păunescu, 2021. "The lack of meaningful boundary differences between journal impact factor quartiles undermines their independent use in research evaluation," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1495-1525, February.
    7. Lutz Bornmann & Robin Haunschild, 2018. "Plots for visualizing paper impact and journal impact of single researchers in a single graph," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 385-394, April.
    8. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Giuseppe La Torre & Remigio Bova & Rosario Andrea Cocchiara & Cristina Sestili & Anna Tagliaferri & Simona Maggiacomo & Camilla Foschi & William Zomparelli & Maria Vittoria Manai & David Shaholli & Va, 2023. "What Are the Determinants of the Quality of Systematic Reviews in the International Journals of Occupational Medicine? A Methodological Study Review of Published Literature," IJERPH, MDPI, vol. 20(2), pages 1-12, January.
    10. Sven Helmer & David B. Blumenthal & Kathrin Paschen, 2020. "What is meaningful research and how should we measure it?," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 153-169, October.
    11. Zsolt Kohus & Márton Demeter & László Kun & Eszter Lukács & Katalin Czakó & Gyula Péter Szigeti, 2022. "A Study of the Relation between Byline Positions of Affiliated/Non-Affiliated Authors and the Scientific Impact of European Universities in Times Higher Education World University Rankings," Sustainability, MDPI, vol. 14(20), pages 1-14, October.
    12. Lanu Kim & Jason H. Portenoy & Jevin D. West & Katherine W. Stovel, 2020. "Scientific journals still matter in the era of academic search engines and preprint archives," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 71(10), pages 1218-1226, October.
    13. A. Velez-Estevez & P. García-Sánchez & J. A. Moral-Munoz & M. J. Cobo, 2022. "Why do papers from international collaborations get more citations? A bibliometric analysis of Library and Information Science papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7517-7555, December.
    14. Yurij L. Katchanov & Yulia V. Markova, 2017. "The “space of physics journals”: topological structure and the Journal Impact Factor," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 313-333, October.
    15. Qian Ma & Yandan Li & Yan Zhang, 2020. "Informetric Analysis of Highly Cited Papers in Environmental Sciences Based on Essential Science Indicators," IJERPH, MDPI, vol. 17(11), pages 1-14, May.
    16. Brito, Ricardo & Rodríguez-Navarro, Alonso, 2019. "Evaluating research and researchers by the journal impact factor: Is it better than coin flipping?," Journal of Informetrics, Elsevier, vol. 13(1), pages 314-324.
    17. Veronica Paul Kundy & Kamini Shah, 2024. "The knowledge base of financial technology: a bibliometric analysis review," SN Business & Economics, Springer, vol. 4(7), pages 1-22, July.
    18. Lutz Bornmann & Adam Y. Ye & Fred Y. Ye, 2018. "Identifying “hot papers” and papers with “delayed recognition” in large-scale datasets by using dynamically normalized citation impact scores," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 655-674, August.
    19. Zehra Taşkın, 2021. "Forecasting the future of library and information science and its sub-fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1527-1551, February.
    20. Hamdi A. Al-Jamimi & Galal M. BinMakhashen & Lutz Bornmann & Yousif Ahmed Al Wajih, 2023. "Saudi Arabia research: academic insights and trend analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(10), pages 5595-5627, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:129:y:2024:i:8:d:10.1007_s11192-024-05105-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.