IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v126y2021i4d10.1007_s11192-021-03890-6.html
   My bibliography  Save this article

Measuring the impact of biodiversity datasets: data reuse, citations and altmetrics

Author

Listed:
  • Nushrat Khan

    (University of Wolverhampton)

  • Mike Thelwall

    (University of Wolverhampton)

  • Kayvan Kousha

    (University of Wolverhampton)

Abstract

Despite growing evidence of open biodiversity data reuse by scientists, information about how data is reused and cited is rarely openly accessible from research data repositories. This study explores data citation and reuse practices in biodiversity by using openly available metadata for 43,802 datasets indexed in the Global Biodiversity Information Facility (GBIF) and content analyses of articles citing GBIF data. Results from quantitative and content analyses suggest that even though the number of studies making use of openly available biodiversity data has been increasing steadily, best practice for data citation is not yet common. It is encouraging, however, that an increasing number of recent articles (16 out of 23 in 2019) in biodiversity cite datasets in a standard way. A content analysis of a random sample of unique citing articles (n = 100) found various types of background (n = 18) and foreground (n = 81) reuse cases for GBIF data, ranging from combining with other data sources to create species distribution modelling to software testing. This demonstrates some unique research opportunities created by open data. Among the citing articles, 27% mentioned the dataset in references and 13% in data access statements in addition to the methods section. Citation practice was inconsistent especially when a large number of subsets (12 ~ 50) were used. Even though many GBIF dataset records had altmetric scores, most posts only mentioned the articles linked to those datasets. Among the altmetric mentions of datasets, blogs can be the most informative, even though rare, and most tweets and Facebook posts were for promotional purposes.

Suggested Citation

  • Nushrat Khan & Mike Thelwall & Kayvan Kousha, 2021. "Measuring the impact of biodiversity datasets: data reuse, citations and altmetrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3621-3639, April.
  • Handle: RePEc:spr:scient:v:126:y:2021:i:4:d:10.1007_s11192-021-03890-6
    DOI: 10.1007/s11192-021-03890-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-021-03890-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-021-03890-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicolas Robinson-García & Evaristo Jiménez-Contreras & Daniel Torres-Salinas, 2016. "Analyzing data citation practices using the data citation index," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(12), pages 2964-2975, December.
    2. Christine L. Borgman, 2012. "The conundrum of sharing research data," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(6), pages 1059-1078, June.
    3. Libby Bishop & Arja Kuula-Luumi, 2017. "Revisiting Qualitative Data Reuse," SAGE Open, , vol. 7(1), pages 21582440166, January.
    4. Christine L. Borgman, 2012. "The conundrum of sharing research data," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(6), pages 1059-1078, June.
    5. Isabella Peters & Peter Kraker & Elisabeth Lex & Christian Gumpenberger & Juan Gorraiz, 2016. "Research data explored: an extended analysis of citations and altmetrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 723-744, May.
    6. Gianmaria Silvello, 2018. "Theory and practice of data citation," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 69(1), pages 6-20, January.
    7. Hadas Shema & Judit Bar-Ilan & Mike Thelwall, 2014. "Do blog citations correlate with a higher number of future citations? Research blogs as a potential source for alternative metrics," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(5), pages 1018-1027, May.
    8. Lutz Bornmann, 2015. "Alternative metrics in scientometrics: a meta-analysis of research into three altmetrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(3), pages 1123-1144, June.
    9. Hyoungjoo Park & Dietmar Wolfram, 2017. "An examination of research data sharing and re-use: implications for data citation practice," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 443-461, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei‐Min Fan & Wei Jeng & Muh‐Chyun Tang, 2023. "Using data citation to define a knowledge domain: A case study of the Add‐Health dataset," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(1), pages 81-98, January.
    2. Mandy Wigdorowitz & Marton Ribary & Andrea Farina & Eleonora Lima & Daniele Borkowski & Paola Marongiu & Amanda H. Sorensen & Christelle Timis & Barbara McGillivray, 2024. "It Takes a Village! Editorship, Advocacy, and Research in Running an Open Access Data Journal," Publications, MDPI, vol. 12(3), pages 1-10, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mike Thelwall, 2020. "Data in Brief: Can a mega-journal for data be useful?," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 697-709, July.
    2. Sixto-Costoya Andrea & Robinson-Garcia Nicolas & Leeuwen Thed & Costas Rodrigo, 2021. "Exploring the relevance of ORCID as a source of study of data sharing activities at the individual-level: a methodological discussion," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 7149-7165, August.
    3. Robinson-Garcia, Nicolas & Mongeon, Philippe & Jeng, Wei & Costas, Rodrigo, 2017. "DataCite as a novel bibliometric source: Coverage, strengths and limitations," Journal of Informetrics, Elsevier, vol. 11(3), pages 841-854.
    4. Vikas Jaiman & Leonard Pernice & Visara Urovi, 2022. "User incentives for blockchain-based data sharing platforms," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-22, April.
    5. Jianhua Hou & Xiucai Yang & Yang Zhang, 2023. "The effect of social media knowledge cascade: an analysis of scientific papers diffusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(9), pages 5169-5195, September.
    6. Benedikt Fecher & Sascha Friesike & Marcel Hebing, 2014. "What Drives Academic Data Sharing?," SOEPpapers on Multidisciplinary Panel Data Research 655, DIW Berlin, The German Socio-Economic Panel (SOEP).
    7. Carol Tenopir & Elizabeth D Dalton & Suzie Allard & Mike Frame & Ivanka Pjesivac & Ben Birch & Danielle Pollock & Kristina Dorsett, 2015. "Changes in Data Sharing and Data Reuse Practices and Perceptions among Scientists Worldwide," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-24, August.
    8. Federica Cugnata & Chiara Brombin & Chiara Maria Poli & Roberto Buccione & Clelia Serio, 2024. "Modelling perception and resilience factors to data sharing in clinical and basic research: an observational study," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(6), pages 3169-3192, June.
    9. Andrea K. Thomer, 2022. "Integrative data reuse at scientifically significant sites: Case studies at Yellowstone National Park and the La Brea Tar Pits," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(8), pages 1155-1170, August.
    10. Bornmann, Lutz & Haunschild, Robin & Adams, Jonathan, 2019. "Do altmetrics assess societal impact in a comparable way to case studies? An empirical test of the convergent validity of altmetrics based on data from the UK research excellence framework (REF)," Journal of Informetrics, Elsevier, vol. 13(1), pages 325-340.
    11. Koenraad De Smedt & Dimitris Koureas & Peter Wittenburg, 2020. "FAIR Digital Objects for Science: From Data Pieces to Actionable Knowledge Units," Publications, MDPI, vol. 8(2), pages 1-17, April.
    12. Plantin, Jean-Christophe, 2021. "The data archive as factory: alienation and resistance of data processors," LSE Research Online Documents on Economics 109692, London School of Economics and Political Science, LSE Library.
    13. Xia Nan & Ming Li & Jin Shi, 2020. "Using altmetrics for assessing impact of highly-cited books in Chinese Book Citation Index," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1651-1669, March.
    14. Keren Weinshall & Lee Epstein, 2020. "Developing High‐Quality Data Infrastructure for Legal Analytics: Introducing the Israeli Supreme Court Database," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 17(2), pages 416-434, June.
    15. Jenny Bossaller & Anthony J. Million, 2023. "The research data life cycle, legacy data, and dilemmas in research data management," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(6), pages 701-706, June.
    16. Guillaume Cabanac & Thomas Preuss, 2013. "Capitalizing on order effects in the bids of peer-reviewed conferences to secure reviews by expert referees," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(2), pages 405-415, February.
    17. Liwei Zhang & Liang Ma, 2021. "Does open data boost journal impact: evidence from Chinese economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3393-3419, April.
    18. Dosso, Dennis & Silvello, Gianmaria, 2020. "Data credit distribution: A new method to estimate databases impact," Journal of Informetrics, Elsevier, vol. 14(4).
    19. Shibayama, Sotaro & Lawson, Cornelia, 2021. "The use of rewards in the sharing of research resources," Research Policy, Elsevier, vol. 50(7).
    20. Koutroumpis, Pantelis & Leiponen, Aija & Thomas, Llewellyn D W, 2017. "The (Unfulfilled) Potential of Data Marketplaces," ETLA Working Papers 53, The Research Institute of the Finnish Economy.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:126:y:2021:i:4:d:10.1007_s11192-021-03890-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.