IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v126y2021i4d10.1007_s11192-020-03859-x.html
   My bibliography  Save this article

Data-driven artificial intelligence to automate researcher assessment

Author

Listed:
  • Rosina O. Weber

    (Drexel University)

  • Kedma B. Duarte

    (Goias State University)

Abstract

This article describes how to utilize data-driven artificial intelligence (AI) to automate researcher assessment using data from profiling systems. We consider that a researcher assessment is done for a purpose and not divorced from a specific target placement. We formulate researcher assessment as a binary classification task, that is, a candidate researcher is classified as either fit or unfit for a given placement. For classifying researchers, we adopt case-based reasoning, a transparent artificial intelligence methodology that implements analogical reasoning, allows adaptation, machine learning, and explainability. This work addresses a human limitation through AI. Given a small number of candidates for a job or award and a clear job description, even if capable of selecting the best fit candidate, human decisions may be neither transparent nor reproducible. The approach in this article describes how to use AI methods to, from a job description, select the best fit candidate while considering career trajectories, providing explanations, and being reproducible. We describe the implementation of the methodology for a hypothetical placement in a real research institute from real but anonymized curriculum vitae from the Brazilian Lattes Database. We describe an experiment demonstrating that the purpose-oriented approach is more accurate than purpose-independent classifiers. The proposed methodology meets various principles from the Leiden Manifesto.

Suggested Citation

  • Rosina O. Weber & Kedma B. Duarte, 2021. "Data-driven artificial intelligence to automate researcher assessment," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3265-3281, April.
  • Handle: RePEc:spr:scient:v:126:y:2021:i:4:d:10.1007_s11192-020-03859-x
    DOI: 10.1007/s11192-020-03859-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-020-03859-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-020-03859-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Researcher assessment; Profiling systems; Case-based reasoning; Machine learning; Leiden manifesto; Career trajectory;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:126:y:2021:i:4:d:10.1007_s11192-020-03859-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.