IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v126y2021i4d10.1007_s11192-020-03843-5.html
   My bibliography  Save this article

A call for governments to pause Twitter censorship: using Twitter data as social-spatial sensors of COVID-19/SARS-CoV-2 research diffusion

Author

Listed:
  • Vanash M. Patel

    (St. Mary’s Hospital
    Watford General Hospital)

  • Robin Haunschild

    (Max Planck Institute for Solid State Research)

  • Lutz Bornmann

    (Administrative Headquarters of the Max Planck Society)

  • George Garas

    (St. Mary’s Hospital)

Abstract

In this study we determined whether Twitter data can be used as social-spatial sensors to show how research on COVID-19/SARS-CoV-2 diffuses through the population to reach the people that are affected by the disease. We performed a cross-sectional bibliometric analysis between 23rd March and 14th April 2020. Three sources of data were used: (1) deaths per number of population for COVID-19/SARS-CoV-2 retrieved from John Hopkins University and Worldometer, (2) publications related to COVID-19/SARS-CoV-2 retrieved from World Health Organisation COVID-19 database, and (3) tweets of these publications retrieved from Altmetric.com and Twitter. In the analysis, the number of publications used was 1761, and number of tweets used was 751,068. Mapping of worldwide data illustrated that high Twitter activity was related to high numbers of COVID-19/SARS-CoV-2 deaths, with tweets inversely weighted with number of publications. Regression models of worldwide data showed a positive correlation between the national deaths per number of population and tweets when holding number of publications constant (coefficient 0.0285, S.E. 0.0003, p

Suggested Citation

  • Vanash M. Patel & Robin Haunschild & Lutz Bornmann & George Garas, 2021. "A call for governments to pause Twitter censorship: using Twitter data as social-spatial sensors of COVID-19/SARS-CoV-2 research diffusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3193-3207, April.
  • Handle: RePEc:spr:scient:v:126:y:2021:i:4:d:10.1007_s11192-020-03843-5
    DOI: 10.1007/s11192-020-03843-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-020-03843-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-020-03843-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jeremy Ginsberg & Matthew H. Mohebbi & Rajan S. Patel & Lynnette Brammer & Mark S. Smolinski & Larry Brilliant, 2009. "Detecting influenza epidemics using search engine query data," Nature, Nature, vol. 457(7232), pages 1012-1014, February.
    2. repec:aph:ajpbhl:10.2105/ajph.2016.303512_4 is not listed on IDEAS
    3. Apoorva Mandavilli, 2011. "Peer review: Trial by Twitter," Nature, Nature, vol. 469(7330), pages 286-287, January.
    4. Stefanie Haustein & Isabella Peters & Cassidy R. Sugimoto & Mike Thelwall & Vincent Larivière, 2014. "Tweeting biomedicine: An analysis of tweets and citations in the biomedical literature," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(4), pages 656-669, April.
    5. Amalia Mas-Bleda & Mike Thelwall, 2016. "Can alternative indicators overcome language biases in citation counts? A comparison of Spanish and UK research," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 2007-2030, December.
    6. Sinnenberg, L. & Buttenheim, A.M. & Padrez, K. & Mancheno, C. & Ungar, L. & Merchant, R.M., 2017. "Twitter as a tool for health research: A systematic review," American Journal of Public Health, American Public Health Association, vol. 107(1), pages 1-8.
    7. Wickham, Hadley, 2011. "The Split-Apply-Combine Strategy for Data Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i01).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haunschild, Robin & Bornmann, Lutz, 2023. "Which papers cited which tweets? An exploratory analysis based on Scopus data," Journal of Informetrics, Elsevier, vol. 17(2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lutz Bornmann & Robin Haunschild & Vanash M Patel, 2020. "Are papers addressing certain diseases perceived where these diseases are prevalent? The proposal to use Twitter data as social-spatial sensors," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-22, November.
    2. Bornmann, Lutz & Haunschild, Robin & Adams, Jonathan, 2019. "Do altmetrics assess societal impact in a comparable way to case studies? An empirical test of the convergent validity of altmetrics based on data from the UK research excellence framework (REF)," Journal of Informetrics, Elsevier, vol. 13(1), pages 325-340.
    3. J. C. F. Winter, 2015. "The relationship between tweets, citations, and article views for PLOS ONE articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(2), pages 1773-1779, February.
    4. Lutz Bornmann & Rüdiger Mutz & Robin Haunschild & Felix Moya-Anegon & Mirko Almeida Madeira Clemente & Moritz Stefaner, 2021. "Mapping the impact of papers on various status groups in excellencemapping.net: a new release of the excellence mapping tool based on citation and reader scores," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(11), pages 9305-9331, November.
    5. Amir Haghighati & Kamran Sedig, 2020. "VARTTA: A Visual Analytics System for Making Sense of Real-Time Twitter Data," Data, MDPI, vol. 5(1), pages 1-25, February.
    6. David H Chae & Sean Clouston & Mark L Hatzenbuehler & Michael R Kramer & Hannah L F Cooper & Sacoby M Wilson & Seth I Stephens-Davidowitz & Robert S Gold & Bruce G Link, 2015. "Association between an Internet-Based Measure of Area Racism and Black Mortality," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-12, April.
    7. Xiaoli Wang & Shuangsheng Wu & C Raina MacIntyre & Hongbin Zhang & Weixian Shi & Xiaomin Peng & Wei Duan & Peng Yang & Yi Zhang & Quanyi Wang, 2015. "Using an Adjusted Serfling Regression Model to Improve the Early Warning at the Arrival of Peak Timing of Influenza in Beijing," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-14, March.
    8. Dolejš Martin & Forejt Michal, 2019. "Franziscean Cadastre in Landscape Structure Research: A Systematic Review," Quaestiones Geographicae, Sciendo, vol. 38(1), pages 131-144, March.
    9. Ishani Chaudhuri & Parthajit Kayal, 2022. "Predicting Power of Ticker Search Volume in Indian Stock Market," Working Papers 2022-214, Madras School of Economics,Chennai,India.
    10. Yang, Xin & Pan, Bing & Evans, James A. & Lv, Benfu, 2015. "Forecasting Chinese tourist volume with search engine data," Tourism Management, Elsevier, vol. 46(C), pages 386-397.
    11. Kuchler, Theresa & Russel, Dominic & Stroebel, Johannes, 2022. "JUE Insight: The geographic spread of COVID-19 correlates with the structure of social networks as measured by Facebook," Journal of Urban Economics, Elsevier, vol. 127(C).
    12. Markowitz, Sara & Nesson, Erik & Robinson, Joshua J., 2019. "The effects of employment on influenza rates," Economics & Human Biology, Elsevier, vol. 34(C), pages 286-295.
    13. Bentzen, Jeanet Sinding, 2021. "In crisis, we pray: Religiosity and the COVID-19 pandemic," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 541-583.
    14. Jesse T. Richman & Ryan J. Roberts, 2023. "Assessing Spurious Correlations in Big Search Data," Forecasting, MDPI, vol. 5(1), pages 1-12, February.
    15. Linus Schiöler & Marianne Fris�n, 2012. "Multivariate outbreak detection," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(2), pages 223-242, April.
    16. Sasikiran Kandula & Jeffrey Shaman, 2019. "Reappraising the utility of Google Flu Trends," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-16, August.
    17. Daniel E. O'Leary, 2024. "Toward an extended framework of exhaust data for predictive analytics: An empirical approach," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
    18. Luis-Millán González & José Devís-Devís & Maite Pellicer-Chenoll & Miquel Pans & Alberto Pardo-Ibañez & Xavier García-Massó & Fernanda Peset & Fernanda Garzón-Farinós & Víctor Pérez-Samaniego, 2021. "The Impact of COVID-19 on Sport in Twitter: A Quantitative and Qualitative Content Analysis," IJERPH, MDPI, vol. 18(9), pages 1-20, April.
    19. Yangkun Huang & Xiaoping Xu & Sini Su, 2021. "Diverging from News Media: An Exploratory Study on the Changing Dynamics between Media and Public Attention on Cancer in China from 2011–2020," IJERPH, MDPI, vol. 18(16), pages 1-13, August.
    20. Vosen, Simeon & Schmidt, Torsten, 2012. "A monthly consumption indicator for Germany based on Internet search query data," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 19(7), pages 683-687.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:126:y:2021:i:4:d:10.1007_s11192-020-03843-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.