IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v126y2021i1d10.1007_s11192-020-03690-4.html
   My bibliography  Save this article

Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science, and OpenCitations’ COCI: a multidisciplinary comparison of coverage via citations

Author

Listed:
  • Alberto Martín-Martín

    (Universidad de Granada)

  • Mike Thelwall

    (University of Wolverhampton)

  • Enrique Orduna-Malea

    (Universitat Politècnica de València)

  • Emilio Delgado López-Cózar

    (Universidad de Granada)

Abstract

New sources of citation data have recently become available, such as Microsoft Academic, Dimensions, and the OpenCitations Index of CrossRef open DOI-to-DOI citations (COCI). Although these have been compared to the Web of Science Core Collection (WoS), Scopus, or Google Scholar, there is no systematic evidence of their differences across subject categories. In response, this paper investigates 3,073,351 citations found by these six data sources to 2,515 English-language highly-cited documents published in 2006 from 252 subject categories, expanding and updating the largest previous study. Google Scholar found 88% of all citations, many of which were not found by the other sources, and nearly all citations found by the remaining sources (89–94%). A similar pattern held within most subject categories. Microsoft Academic is the second largest overall (60% of all citations), including 82% of Scopus citations and 86% of WoS citations. In most categories, Microsoft Academic found more citations than Scopus and WoS (182 and 223 subject categories, respectively), but had coverage gaps in some areas, such as Physics and some Humanities categories. After Scopus, Dimensions is fourth largest (54% of all citations), including 84% of Scopus citations and 88% of WoS citations. It found more citations than Scopus in 36 categories, more than WoS in 185, and displays some coverage gaps, especially in the Humanities. Following WoS, COCI is the smallest, with 28% of all citations. Google Scholar is still the most comprehensive source. In many subject categories Microsoft Academic and Dimensions are good alternatives to Scopus and WoS in terms of coverage.

Suggested Citation

  • Alberto Martín-Martín & Mike Thelwall & Enrique Orduna-Malea & Emilio Delgado López-Cózar, 2021. "Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science, and OpenCitations’ COCI: a multidisciplinary comparison of coverage via citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 871-906, January.
  • Handle: RePEc:spr:scient:v:126:y:2021:i:1:d:10.1007_s11192-020-03690-4
    DOI: 10.1007/s11192-020-03690-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-020-03690-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-020-03690-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anne-Wil Harzing & Satu Alakangas, 2017. "Microsoft Academic: is the phoenix getting wings?," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(1), pages 371-383, January.
    2. Martin-Martin, Alberto & Orduna-Malea, Enrique & Harzing, Anne-Wil & Delgado López-Cózar, Emilio, 2017. "Can we use Google Scholar to identify highly-cited documents?," Journal of Informetrics, Elsevier, vol. 11(1), pages 152-163.
    3. Mike Thelwall, 2018. "Does Microsoft Academic find early citations?," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(1), pages 325-334, January.
    4. David Shotton, 2013. "Publishing: Open citations," Nature, Nature, vol. 502(7471), pages 295-297, October.
    5. Robin Haunschild & Sven E. Hug & Martin P. Brändle & Lutz Bornmann, 2018. "The number of linked references of publications in Microsoft Academic in comparison with the Web of Science," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(1), pages 367-370, January.
    6. Thelwall, Mike, 2018. "Dimensions: A competitor to Scopus and the Web of Science?," Journal of Informetrics, Elsevier, vol. 12(2), pages 430-435.
    7. Kousha, Kayvan & Thelwall, Mike, 2018. "Can Microsoft Academic help to assess the citation impact of academic books?," Journal of Informetrics, Elsevier, vol. 12(3), pages 972-984.
    8. Moed, Henk F. & Bar-Ilan, Judit & Halevi, Gali, 2016. "A new methodology for comparing Google Scholar and Scopus," Journal of Informetrics, Elsevier, vol. 10(2), pages 533-551.
    9. Anne-Wil Harzing & Satu Alakangas, 2017. "Microsoft Academic is one year old: the Phoenix is ready to leave the nest," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1887-1894, September.
    10. Ivan Heibi & Silvio Peroni & David Shotton, 2019. "Software review: COCI, the OpenCitations Index of Crossref open DOI-to-DOI citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 1213-1228, November.
    11. Sven E. Hug & Martin P. Brändle, 2017. "The coverage of Microsoft Academic: analyzing the publication output of a university," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(3), pages 1551-1571, December.
    12. Thelwall, Mike, 2018. "Microsoft Academic automatic document searches: Accuracy for journal articles and suitability for citation analysis," Journal of Informetrics, Elsevier, vol. 12(1), pages 1-9.
    13. Kousha, Kayvan & Thelwall, Mike & Abdoli, Mahshid, 2018. "Can Microsoft Academic assess the early citation impact of in-press articles? A multi-discipline exploratory analysis," Journal of Informetrics, Elsevier, vol. 12(1), pages 287-298.
    14. David Shotton, 2018. "Funders should mandate open citations," Nature, Nature, vol. 553(7687), pages 129-129, January.
    15. Anne-Wil Harzing & Satu Alakangas, 2016. "Google Scholar, Scopus and the Web of Science: a longitudinal and cross-disciplinary comparison," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 787-804, February.
    16. Anne-Wil Harzing, 2019. "Two new kids on the block: How do Crossref and Dimensions compare with Google Scholar, Microsoft Academic, Scopus and the Web of Science?," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(1), pages 341-349, July.
    17. Martín-Martín, Alberto & Orduna-Malea, Enrique & Thelwall, Mike & Delgado López-Cózar, Emilio, 2018. "Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories," Journal of Informetrics, Elsevier, vol. 12(4), pages 1160-1177.
    18. Thelwall, Mike, 2017. "Microsoft Academic: A multidisciplinary comparison of citation counts with Scopus and Mendeley for 29 journals," Journal of Informetrics, Elsevier, vol. 11(4), pages 1201-1212.
    19. Anne-Wil Harzing, 2016. "Microsoft Academic (Search): a Phoenix arisen from the ashes?," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(3), pages 1637-1647, September.
    20. Halevi, Gali & Moed, Henk & Bar-Ilan, Judit, 2017. "Suitability of Google Scholar as a source of scientific information and as a source of data for scientific evaluation—Review of the Literature," Journal of Informetrics, Elsevier, vol. 11(3), pages 823-834.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhentao Liang & Jin Mao & Kun Lu & Gang Li, 2021. "Finding citations for PubMed: a large-scale comparison between five freely available bibliographic data sources," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9519-9542, December.
    2. Anne-Wil Harzing, 2019. "Two new kids on the block: How do Crossref and Dimensions compare with Google Scholar, Microsoft Academic, Scopus and the Web of Science?," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(1), pages 341-349, July.
    3. Michael Thelwall, 2018. "Can Microsoft Academic be used for citation analysis of preprint archives? The case of the Social Science Research Network," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 913-928, May.
    4. Kousha, Kayvan & Thelwall, Mike & Abdoli, Mahshid, 2018. "Can Microsoft Academic assess the early citation impact of in-press articles? A multi-discipline exploratory analysis," Journal of Informetrics, Elsevier, vol. 12(1), pages 287-298.
    5. Raminta Pranckutė, 2021. "Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World," Publications, MDPI, vol. 9(1), pages 1-59, March.
    6. Kousha, Kayvan & Thelwall, Mike, 2018. "Can Microsoft Academic help to assess the citation impact of academic books?," Journal of Informetrics, Elsevier, vol. 12(3), pages 972-984.
    7. Thelwall, Mike, 2018. "Microsoft Academic automatic document searches: Accuracy for journal articles and suitability for citation analysis," Journal of Informetrics, Elsevier, vol. 12(1), pages 1-9.
    8. Mike Thelwall, 2018. "Does Microsoft Academic find early citations?," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(1), pages 325-334, January.
    9. Michael Gusenbauer, 2019. "Google Scholar to overshadow them all? Comparing the sizes of 12 academic search engines and bibliographic databases," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 177-214, January.
    10. Yihui Lan & Kenneth W Clements & Zong Ken Chai, 2022. "Australian PhDs in Economics and Finance: Professional Activities, Productivity and Prospects," Economics Discussion / Working Papers 22-04, The University of Western Australia, Department of Economics.
    11. Michael Gusenbauer, 2022. "Search where you will find most: Comparing the disciplinary coverage of 56 bibliographic databases," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2683-2745, May.
    12. Irina Gerasimov & Binita KC & Armin Mehrabian & James Acker & Michael P. McGuire, 2024. "Comparison of datasets citation coverage in Google Scholar, Web of Science, Scopus, Crossref, and DataCite," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 3681-3704, July.
    13. Vivek Kumar Singh & Prashasti Singh & Mousumi Karmakar & Jacqueline Leta & Philipp Mayr, 2021. "The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(6), pages 5113-5142, June.
    14. Thelwall, Mike, 2018. "Dimensions: A competitor to Scopus and the Web of Science?," Journal of Informetrics, Elsevier, vol. 12(2), pages 430-435.
    15. Gerson Pech & Catarina Delgado, 2020. "Assessing the publication impact using citation data from both Scopus and WoS databases: an approach validated in 15 research fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(2), pages 909-924, November.
    16. Vivek Kumar Singh & Satya Swarup Srichandan & Hiran H. Lathabai, 2022. "ResearchGate and Google Scholar: how much do they differ in publications, citations and different metrics and why?," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(3), pages 1515-1542, March.
    17. Sven E. Hug & Martin P. Brändle, 2017. "The coverage of Microsoft Academic: analyzing the publication output of a university," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(3), pages 1551-1571, December.
    18. Robin Haunschild & Sven E. Hug & Martin P. Brändle & Lutz Bornmann, 2018. "The number of linked references of publications in Microsoft Academic in comparison with the Web of Science," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(1), pages 367-370, January.
    19. Mike Thelwall & Nabeil Maflahi, 2020. "Academic collaboration rates and citation associations vary substantially between countries and fields," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 71(8), pages 968-978, August.
    20. Iman Tahamtan & Lutz Bornmann, 2019. "What do citation counts measure? An updated review of studies on citations in scientific documents published between 2006 and 2018," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1635-1684, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:126:y:2021:i:1:d:10.1007_s11192-020-03690-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.